
Всё, что вы хотели узнать про автовакуум в PostgreSQL

Ilya Kosmodemiansky
ik@postgresql-consulting.com

Outline

• What is it and why is it so important?
• Aggressiveness of autovacuum
• What else important can autovacuum daemon do
• Autovacuum and replication
• How to remove bloat

Two most common problems we meet in our practice

• autovacuum = off
• Autovacuum settings are default

Two most common problems we meet in our practice

• autovacuum = off
• Autovacuum settings are default
• That means there is a lot we can do about improving performance of this
particular database

What is autovacuum?

Modern (classical) databases must deal with two fundamental problems:
• Concurrent operations
For that they can transactions, ACID transactions

• Failures
For that they can recover to the last successful transaction using WAL

What is autovacuum?

Technically that means
• There is a combination of locking and MVCC algorithms that provides transactions
support

• Undo and Redo information is stored somewhere to make recovery possible

What is autovacuum?

In PostgreSQL
• Redo - in WAL
• Undo - directly in datafiles
• UPDATE = INSERT + DELETE
• DELETE is just marking tuple as invisible

xmin

tt=# INSERT into test(id) values(5);
INSERT 0 1
tt=# select *,xmin,xmax from test;
id | xmin | xmax

----+------+------
5 | 1266 | 0

(5 rows)

tt=# select txid_current();
txid_current

1267

(1 row)

xmax

tt=# begin;
BEGIN
tt=# UPDATE test set id=5 where id=4;
UPDATE 1

In another session:

tt=# select *,xmin,xmax from test;
id | xmin | xmax

----+------+------
4 | 1264 | 1270

(3 rows)

Some garbage collection is required

Tuples that are not visible to any running transaction should be removed
• Otherwise fragmentation increases and you run into bloat aka Big Data
• autovacuum workers do that, table by table
• Old-fashioned VACUUM is a bad choice

Beside that, autovacuum workers
• Collect statistics for the optimizer
• Perform wraparound for txid

Some garbage collection is required

Tuples that are not visible to any running transaction should be removed
• Otherwise fragmentation increases and you run into bloat aka Big Data
• autovacuum workers do that, table by table
• Old-fashioned VACUUM is a bad choice

Beside that, autovacuum workers
• Collect statistics for the optimizer
• Perform wraparound for txid

You do not want to turn autovacuum off!

This sort of work must be finally done

• If your autovacuum process runs for hours and interferes with some DDL, to
simply terminate it is not an option

• Especially for OLTP, autovacuum should be configured aggressively enough: so it
can work with small portions of data quickly

autovacuum: aggressive enough

postgres=# select name, setting, context from pg_settings
where category ~ ’Autovacuum’;

name | setting | context
-------------------------------------+-----------+------------
autovacuum | on | sighup
autovacuum_analyze_scale_factor | 0.05 | sighup
autovacuum_analyze_threshold | 50 | sighup
autovacuum_freeze_max_age | 200000000 | postmaster
autovacuum_max_workers | 10 | postmaster
autovacuum_multixact_freeze_max_age | 400000000 | postmaster
autovacuum_naptime | 60 | sighup
autovacuum_vacuum_cost_delay | 20 | sighup
autovacuum_vacuum_cost_limit | -1 | sighup
autovacuum_vacuum_scale_factor | 0.01 | sighup
autovacuum_vacuum_threshold | 50 | sighup

(11 rows)

Sometimes a good idea

in crontab:

* * * * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ renice -n 20 -p $ >/dev/null 2>/dev/null
* * * * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ ionice -c 3 -t -p $

in postgresql.conf:

autovacuum_max_workers → 10-20 and autovacuum_vacuum_cost_delay → 10

As a result

ERROR: canceling statement due to conflict with recovery

• The tuple, cleaned up by autovacuum on master, is still in use by some query on
hot standby

• hot_standby_feedback = on - The safest way, in spite of some bloat on master

Before you hurry to reconfigure your PostgreSQL

• autovacuum does not remove existing bloat
• dump/restore can be an option, but...
• http://reorg.github.io/pg_repack/
• https://github.com/PostgreSQL-Consulting/pgcompacttable

Questions?

ik@postgresql-consulting.com

