

Logical decoding

The door to a new world
of data exchange

and integration applications
for PostgreSQL

Álvaro Hernández <aht@8kdata.com>

Logical Decoding

● Research & Development in Databases

● Consulting, Training and Support in PostgreSQL

● Founders of PostgreSQL España, 4th largest PUG
in the world (~500 members)

● Myself: Álvaro Hernández, 8Kdata CTO
Twitter: @ahachete
LinkedIn: http://linkd.in/1Jm4tAx

About

Logical Decoding

● Extract changes (INSERT, UPDATE, DELETE) from
PostgreSQL in a database-independent way

● Changes are idempotent and ordered.
Changes can be streamed from PostgreSQL

● Reply the state of the database externally:
✔ Replication solutions
✔ Materialized databases
✔ Third-party data-processing applications

Logical Decoding in 1 slide

Logical Decoding:
How it works

Logical Decoding

“Logical decoding is the process of extracting all
persistent changes to a database’s tables into a

coherent, easy to understand format which can be
interpreted without detailed knowledge of the

database’s internal state”

● Changes are decoded row by row, even if they
were produced by a single command

● Unlogged and temp tables are not decoded

Logical Decoding: the basics

Logical Decoding

● As of today, no DDL is decoded
(empty tx may appear in the stream)

● Requires superuser or replication permissions

● Logical decoding works on logical replication
slots (based on physical slots): fine control the
amount of WAL to be kept at the server

Logical Decoding: the basics

Logical Decoding

● The output (database-independent
representation of the change) format is
controlled by an output plugin

● Loaded dynamically (shared library)

● Text or binary output

● A default one is in contrib ('test_decoding')

Logical Decoding Plugins

Logical Decoding

SQL

● Poll for changes

● SQL interface
(function calls)

● Primarily meant for
testing/debugging

Logical Decoding interfaces

Streaming Replication

● Changes are pushed
by PostgreSQL

● Exports the snapshot
while connection open

● Allows for synchronous
(logical) replication

Logical Decoding

● wal_level = logical

● max_replication_slots = <x>

● If accessed over the replication interface:
➔ max_wal_senders = <y>
➔ Configure pg_hba.conf to allow replication

● synchronous_commit = on
(decoding starts as soon as data is flushed)

Configure PostgreSQL for LD

Logical Decoding

SELECT * FROM
pg_create_logical_replication_slot
('<slot_name>', 'test_decoding');

– do changes in the db

SELECT * FROM pg_logical_slot_get_changes
('<slot_name>', null, null);

SQL interface

Logical Decoding

● Obtain the changes:
➔ get vs peek (consume / not consume changes)
➔ {get,peek}_binary: output is bytea

● Output plugin options: control output format
test_decoding options:

➔ …, 'include-timestamp', 'on', …
➔ …, 'include-xids', '1', ...

● Other arguments: upto_lsn, n_entries

SQL interface

Logical Decoding

● Drop the slot when finished using it:
select pg_drop_replication_slot('<slot_name>');

● If slot is not consumed, all WAL since slot
creation are retained!

● If logical decoding client crashes, your database
may end up stopping if pg_xlog fills!

● Slots may be consumed by more than one client

Slots lifecycle

Logical Decoding

● pg_replication_slots
View with information about both physical and
logical replication slots

● pg_stat_replication
View replication statistics (logical decoding only
if connected via the replication interface)

Checking status

Logical Decoding

● On UPDATE or DELETE the old row information
is decoded depending on REPLICA IDENTITY:

➔ DEFAULT: values from PK (if any)
➔ FULL: all values
➔ NOTHING: none
➔ USING INDEX <index_name>: values covered

by the index (not null, not partial)

● ALTER TABLE … REPLICA IDENTITY …

REPLICA IDENTITY

Logical Decoding

● Send commands over replication protocol

● Or test with psql:
psql "dbname=postgres replication=database" -c
"CREATE_REPLICATION_SLOT slotname LOGICAL
test_decoding <options>"

● Or use pg_recvlogical!
pg_recvlogical --slot slotname --create -d db
pg_recvlogical --slot slotname --start -f - -d db

Replication interface

Logical Decoding:
the door to a new world

of data exchange
and integration applications

for PostgreSQL

Logical Decoding

● Logical Decoding is primarily used for replication
(UDR, BDR, Slony, others?)

● But it is much more than that. Much more!
➔ Extract data from PostgreSQL, reproduce in

other systems
➔ Create externally-controlled data applications
➔ Integrate with other systems (even PostgreSQL!),

like in a sharding environment

Data exchange, data integration

Logical Decoding

● test_decoding
Text output, not easily parseable, but works.
Included in contrib

● https://github.com/michaelpq/pg_plugins/tree/
master/decoder_raw
Decodes to SQL

● https://github.com/xstevens/decoderbufs
Decodes to protocol buffers

Output plugins

https://github.com/xstevens/decoderbufs

Logical Decoding

● https://github.com/eulerto/wal2json
Decodes to JSON

● https://github.com/confluentinc/bottledwater-pg
Decodes to avro, injects into Kafka!

● Your plugin?

Bottled Water

https://github.com/eulerto/wal2json
https://github.com/confluentinc/bottledwater-pg

Logical Decoding

● Logical Decoding is event sourcing for Postgres

● Extract your changes, process them and:
➔ Perform real-time processing (in-memory dbs)
➔ Materialize databases
➔ Invalidate caches
➔ Audit systems
➔ Replicate (of course)
➔ Distribute changes via WAN for DR

Event sourcing

Logical Decoding

Example architecture

Source: http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/

http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/

Logical Decoding

● Implement the replication protocol

● Open replication connection. Get snapshot

● Open new SQL connection. SET TRANSACTION
SNAPSHOT, repeatable read tx. Dump all data

● COPY BOTH (replication connection). Receive
changes

● Send feedback to the server!

External Logical Decoding 101

Logical Decoding

● PostgreSQL docs

● http://www.pgcon.org/2014/schedule/attachments/326_logical-
decoding-pgcon-2014-05-23.pdf

● http://thebuild.com/presentations/fosdem-2015-logical-decodin
g.pdf

● http://michael.otacoo.com/content/materials/20140919_pgope
n_logirep.pdf

More information

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

