
WELCOME ITA

CONFIDENTIAL

Eliminating gaps in the
hiring experience

YELLO’S MISSION STATEMENT

YELLO AT A GLANCE

• Yello founded in 2008 by Jason
Weingarten and Dan Bartfield

• Initial focus on the campus and event
recruiting space

• Recruitment Marketing and Operations in a
single platform using mobile and web
applications

• Market leader with customers in all major
industries

• Consistent focus on innovation by listening
to clients

OUR CLIENT PARTNERS

2016 ITA CITYLIGHTS AWARDS
OUTSTANDING TECHNOLOGY DEVELOPMENT WINNER

ENGINEERING AT YELLO

• ~50 Engineers

• Build mobile and web applications that

are scalable and secure.

• All development in Chicago

• Recruit heavily from universities

ENGINEERING STACK

We’re Hiring

BECOMING A SQL GURU
Stella Nisenbaum

Stella.Nisenbaum@yello.co

Eliminating gaps in the
hiring experience

YELLO’S MISSION STATEMENT

10

WHAT MAKES YELLO UNIQUE

CLIENT FIRST CULTURE

Yello is proud to partner

with clients ranging from

Fortune 500 global

enterprises to high-growth

early-stage companies

AWARD-WINNING

Yello’s Scheduling Solution

was named Top HR

product of 2015 by Human

Resources Executive

Magazine.

MARKET EXPERTISE

Yello’s leadership team is

comprised of many former

corporate recruiting and

HR technology leaders.

11

BECOMING A SQL GURU

• Syntax Overview
• Join Types
• Set Operators
• Filtered Aggregates
• Grouping Sets, Cube, and Rollup
• Subqueries
• Window Functions
• Common Table Expressions (CTE’s)
• Lateral Join
• Questions

AGENDA

12

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
When we think of Standard SQL Syntax...

SELECT expression
FROM table
WHERE condition
ORDER BY expression

13

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
Or maybe we think…

SELECT expression
FROM table
[JOIN TYPE] table2
ON join_condition
WHERE condition
ORDER BY expression

14

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
Then we think…

SELECT expression
FROM table
JOIN_TYPE table2
ON join_condition
WHERE condition
GROUP BY expression
HAVING condition
ORDER BY expression

15

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
But really …

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [* | expression [[AS] output_name] [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

16

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
 [LATERAL] (select) [AS] alias [(column_alias [, ...])]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition [, ...])
 [LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])
 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

17

BECOMING A SQL GURU

QUERIES – SYNTAX OVERVIEW
and grouping_element can be one of:

()
expression
(expression [, ...])
ROLLUP ({ expression | (expression [, ...]) } [, ...])
CUBE ({ expression | (expression [, ...]) } [, ...])
GROUPING SETS (grouping_element [, ...])

and with_query is:

 with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

TABLE [ONLY] table_name [*]

18

BECOMING A SQL GURU

QUERIES – BASIC EXAMPLES
VALUES (1, 'one'), (2, 'two'), (3, 'three');

Column1

1

2

3

TABLE customers;

Is equivalent to:

SELECT * FROM customers;

19

BECOMING A SQL GURU

JOIN TYPES
Inner Join:

Joins each row of the first table with each row from the second table for which the condition matches.
Unmatched rows are removed

Outer Join:
Joins each row from the one table with each row from the second table for which the condition matches.
Unmatched rows are added to the result set such that:

• Left: All rows from the left table are returned, with null values displayed for the right table
• Right: All rows from the right table are returned, with null values displayed for the left table
• Full: All rows from both tables are returned, with null values displayed for unmatched rows in

each table.

Cross Join:
Creates a Cartesian Product of two tables

20

BECOMING A SQL GURU

CROSS JOINS: EXAMPLE
stores

SELECT * FROM stores
CROSS JOIN products

SELECT * FROM stores, products

Results:

products

21

BECOMING A SQL GURU

SET OPERATIONS
customers

suppliers

22

BECOMING A SQL GURU

SET OPERATIONS: UNION VS UNION ALL
SELECT city FROM customers
UNION ALL
SELECT city FROM suppliers

SELECT city FROM customers
UNION
SELECT city FROM suppliers

23

BECOMING A SQL GURU

SET OPERATIONS: EXCEPT VS INTERSECT
SELECT city FROM customers
EXCEPT
SELECT city FROM suppliers

SELECT city FROM customers
INTERSECT
SELECT city FROM suppliers

24

BECOMING A SQL GURU

FILTERED AGGREGATES (9.4)

25

Before:

SELECT
Sum(revenue) as total_revenue
, Sum(Case

when country = ‘USA’
then revenue

else 0
End) as USA_revenue

FROM suppliers s

Now:

SELECT
Sum(revenue) as total_revenue
, Sum(revenue) FILTER (where country = ‘USA’) as USA_revenue
FROM suppliers s

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUP(9.5)

26

Grouping Sets: Allows for the creation of sets wherein a subtotal is
calculated for each set

Rollup: Allows for the creation of a hierarchical grouping/subtotals starting
with the primary group, then the secondary and so on

Cube: Allows for the creation of subtotals for all possible groups (not only
hierarchical)

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUP(9.5)

27

orders

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUP(9.5)

28

SELECT
s.country
, s.supplier_name
, date_trunc('month', o.order_date)::date as order_month
, c.customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
GROUP BY s.country , s.supplier_name ,date_trunc('month', o.order_date), c.customer_name

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUP(9.5)

29

Results:

BECOMING A SQL GURU

GROUPING SETS(9.5)

30

SELECT
s.supplier_name as supplier_name
, date_trunc('month', o.order_date)::date as order_month
, c.customer_name as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
GROUP BY grouping sets (s.supplier_name, date_trunc('month', o.order_date),c.customer_name, ())
ORDER BY grouping(supplier_name, customer_name, date_trunc('month', o.order_date))

BECOMING A SQL GURU

GROUPING SETS(9.5)

31

Results:

BECOMING A SQL GURU

GROUPING SETS(9.5)

32

SELECT
Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(date_trunc('month', o.order_date)) = 0

then date_trunc('month', o.order_date)::date::varchar else 'All Months' end as order_month
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
GROUP BY grouping sets (s.supplier_name, date_trunc('month', o.order_date),c.customer_name, ())
ORDER BY grouping(supplier_name, customer_name, date_trunc('month', o.order_date))

BECOMING A SQL GURU

GROUPING SETS(9.5)

33

Results:

BECOMING A SQL GURU

ROLLUP(9.5)

34

SELECT
Case when grouping(s.country) = 0

then s.country else 'All Countries' end as supplier_country
, Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
WHERE s.country in (‘USA’, ‘Spain’)
GROUP BY rollup(s.country ,supplier_name ,customer_name)

BECOMING A SQL GURU

ROLLUP(9.5)

35

Results:

BECOMING A SQL GURU

ROLLUP(9.5)

36

SELECT
…..

GROUP BY grouping sets (
(s.country, supplier_name, customer_name)
, (s.country, supplier_name)
, (s.country)
, ()
)

BECOMING A SQL GURU

CUBE(9.5)

37

SELECT
Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
WHERE c.id in (1,3)
GROUP BY cube(supplier_name ,customer_name)
ORDER BY grouping(supplier_name), supplier_name, grouping(customer_name), customer_name

BECOMING A SQL GURU

CUBE(9.5)

38

Results:

BECOMING A SQL GURU

SUBQUERIES: UNCORRELATED
Uncorrelated subquery:

- Subquery calculates a constant result set for the upper query
- Executed only once

SELECT supplier_name, city
FROM suppliers s
WHERE s.country in (SELECT country FROM customers)

39

BECOMING A SQL GURU

SUBQUERIES: CORRELATED
Correlated subquery:

- Subquery references variables from the upper query
- Subquery has to be re-executed for each row of the upper query
- Can often be re-written as a join

SELECT supplier_name, country
, (SELECT count(distinct id) FROM customers c where c.country=s.country) cust_ct
FROM suppliers s

40

BECOMING A SQL GURU

WINDOW FUNCTIONS - BASICS
What is a window function?
A function which is applied to a set of rows defined by a window descriptor and returns a
single value for each row from the underlying query

When should you use a window function?
Any time you need to perform calculations or aggregations on your result set while
preserving row level detail

41

BECOMING A SQL GURU

WINDOW FUNCTIONS - SYNTAX
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER
window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (
window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

Where window_definition is:

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

42

BECOMING A SQL GURU

WINDOW FUNCTIONS – FRAME CLAUSE
Frame_clause can be one of :

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

Where frame_start can be one of:

UNBOUNDED PRECEDING
Value PRECEDING
CURRENT ROW

Where frame_end can be one of:

UNBOUNDED FOLLOWING
Value FOLLOWING
CURRENT ROW - (default)

When frame_clause is omitted, default to RANGE UNBOUNDED PRECEDING

43

BECOMING A SQL GURU

WINDOW FUNCTIONS – BASIC EXAMPLE
SELECT
supplier_name , country, revenue
, avg(revenue) OVER (PARTITION BY country)
FROM suppliers

44

BECOMING A SQL GURU

WINDOW FUNCTIONS – RANGE VS ROWS
With RANGE all duplicates are considered part of the same group and the function is run across all of
them, with the same result used for all members of the group.

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (ORDER BY country RANGE UNBOUNDED PRECEDING) ::int
FROM suppliers

45

BECOMING A SQL GURU

WINDOW FUNCTIONS – RANGE VS ROWS
With ROWS, can get a “running” average even across duplicates within the ORDER BY

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (ORDER BY country ROWS UNBOUNDED PRECEDING) ::int
FROM suppliers

46

BECOMING A SQL GURU

WINDOW FUNCTIONS – WINDOW CLAUSE
SELECT
supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

47

BECOMING A SQL GURU

WINDOW FUNCTIONS – ROW NUMBER
SELECT
Row_number() OVER () as row
,supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

48

BECOMING A SQL GURU

WINDOW FUNCTIONS – RANK
SELECT
Rank() OVER (ORDER BY country desc) as rank
, supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

49

BECOMING A SQL GURU

WINDOW FUNCTIONS – RANK WITH ORDER BY
SELECT
Rank() OVER (ORDER BY country desc) as rank
, supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)
Order by supplier_name

50

BECOMING A SQL GURU

WINDOW FUNCTIONS
Built in aggregates +
• row_number ()
• rank ()
• dense_rank ()
• percent_rank ()
• cume_dist ()
• ntile (num_buckets integer)
• lag ()
• lead ()
• first_value ()
• last_value ()
• nth_value (value any, nth integer)

51

BECOMING A SQL GURU

CTE’S – INTRODUCTION
• CTE = Common Table Expression
• Defined by a WITH clause
• Can be seen as a temp table or view which is private to a given query
• Can be recursive/self referencing
• Act as an optimization fence
Syntax:

[WITH [RECURSIVE] with_query [, ...]]

Where with_query is:

with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

Recursion requires the following syntax within the WITH clause:

non_recursive_term UNION [ALL] recursive_term

52

BECOMING A SQL GURU

CTE’S – NON RECURSIVE EXAMPLE
WITH cte_c (country, customer_ct)
as (SELECT country, count(distinct id) as customer_ct

FROM customers
GROUP BY country
)

, cte_s (country, supplier_ct)
as (SELECT country, count(distinct id) as supplier_ct
FROM suppliers
GROUP BY country)

SELECT coalesce(c.country, s.country) as country, customer_ct, supplier_ct
FROM cte_c c
FULL JOIN cte_s s USING (country)

53

BECOMING A SQL GURU

CTE’S – NON RECURSIVE EXAMPLE
Results:

54

BECOMING A SQL GURU

CTE’S – RECURSIVE EXAMPLE
List all numbers from 1 to 100:

WITH RECURSIVE cte_name(n)
AS

(VALUES(1)
UNION
SELECT n+1
FROM cte_name
WHERE n<100)

SELECT * FROM cte_name ORDER by n

55

BECOMING A SQL GURU

CTE’S – RECURSIVE QUERY EVALUATION
1. Evaluate the non-recursive term, discarding duplicate rows (for UNION). Include all remaining rows in the
result of the recursive query as well as in a temporary working table.

2. While the working table is not empty, repeat these steps:
a. Evaluate the recursive term, substituting the current contents of the working table for the

recursive self reference. Discard duplicate rows(for UNION). Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

56

BECOMING A SQL GURU

CTE’S – ANOTHER RECURSIVE EXAMPLE
Parts

57

BECOMING A SQL GURU

CTE’S – ANOTHER RECURSIVE EXAMPLE
Goal: Number of screws needed to assemble a car.

WITH RECURSIVE list(whole, part, ct)
AS
-- non recursive query, assign results to working table and results table
(SELECT whole, part, count as ct FROM parts WHERE whole = ‘car’

-- recursive query with self reference; self reference substituted by working table
-- assigned to intermediary table , working table and appended to results table
UNION
SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte
JOIN parts a

ON a.whole = cte.part

-- empty intermediate table and execute recursive term as long as working table contains any tuple
)

SELECT sum(ct) FROM list WHERE part = ‘screw’
58

BECOMING A SQL GURU

CTE’S – CAVEATS

• Recursive queries actually use iteration
• Union vs Union All
• Only one recursive self-reference allowed
• Primary query evaluates subqueries defined by WITH only once
• Name of the WITH query hides any ‘real’ table
• No aggregates, GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET

allowed in a recursive query
• No mutual recursive WITH queries allowed
• Recursive references must not be part of an OUTER JOIN
• Optimization fence

59

BECOMING A SQL GURU

CTE’S – WRITABLE CTE

Delete from one table and write into another…

WITH archive_rows(whole, part, count)
AS
(DELETE FROM parts
WHERE whole = ‘car’
RETURNING *
)
INSERT INTO parts_archive
SELECT * FROM archive_rows;

60

BECOMING A SQL GURU

CTE’S – RECURSIVE WRITABLE CTE
WITH RECURSIVE list(whole, part, ct)
AS
(SELECT whole, part, count as ct
FROM parts
WHERE whole = ‘car’

UNION
SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte
JOIN parts a ON a.whole = cte.part
)
INSERT INTO car_parts_list
SELECT * FROM list

61

BECOMING A SQL GURU

CTE’S – RECURSIVE WRITABLE CTE
SELECT * FROM car_parts_list

62

BECOMING A SQL GURU

LATERAL(9.3)
LATERAL is a new(ish) JOIN method which allows a subquery in one part of
the FROM clause to reference columns from earlier items in the FROM
clause

• Refer to earlier table
• Refer to earlier subquery
• Refer to earlier set returning function (SRF)

- Implicitly added when a SRF is referring to an earlier item in the
FROM clause

63

BECOMING A SQL GURU

LATERAL – SET RETURNING FUNCTION EXAMPLE

CREATE TABLE numbers
AS
SELECT generate_series as max_num
FROM generate_series(1,10);
--
SELECT *
 FROM numbers ,
LATERAL generate_series(1,max_num);

Same as :
SELECT *
FROM numbers ,
generate_series(1,max_num); … …

Results:

64

BECOMING A SQL GURU

LATERAL – SUBQUERY EXAMPLE
This DOES NOT work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
 FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
 JOIN

 (SELECT *
FROM suppliers s
WHERE s.country = c.country) s

ON true

65

BECOMING A SQL GURU

LATERAL – SUBQUERY EXAMPLE

66

“ERROR: invalid reference to FROM-clause entry
for table "c" Hint: There is an entry for table "c",
but it cannot be referenced from this part of the
query.”

BECOMING A SQL GURU

LATERAL – SUBQUERY EXAMPLE
This DOES NOT work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
 FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
 JOIN

 (SELECT *
FROM suppliers s
WHERE s.country = c.country) s

ON true

This DOES work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
 FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
 JOIN LATERAL

 (SELECT *
FROM suppliers s
WHERE s.country = c.country) s

ON true

67

BECOMING A SQL GURU

LATERAL – SUBQUERY EXAMPLE

68

Results:

BECOMING A SQL GURU

LATERAL – SUBQUERY EXAMPLE
We can re-write this logic using a correlated subquery…

SELECT
c.customer_name
, c.country
, s.supplier_name
, s.country
FROM (SELECT * FROM customers

WHERE customer_name like 'S%') c
JOIN suppliers s

ON s.id =ANY(SELECT id FROM suppliers
WHERE c.country = country)

But it’s pretty messy.

69

BECOMING A SQL GURU

THANK YOU!

Questions?

70

BECOMING A SQL GURU

REFERENCES

71

• Join Types :
• https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html

• Set Operators:
• https://www.postgresql.org/docs/9.5/static/queries-union.html

• Filtered Aggregates:
• https://www.postgresql.org/docs/9.5/static/sql-expressions.html#SYNTAX-AGGREGATES

• Grouping Sets, Cube, and Rollup:
• https://www.postgresql.org/docs/devel/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

• Subqueries:
• https://momjian.us/main/writings/pgsql/aw_pgsql_book/node80.html

• Window Functions:
• https://www.postgresql.org/docs/9.5/static/tutorial-window.html

• Common Table Expressions (CTE’s):
• https://www.postgresql.org/docs/9.5/static/queries-with.html
• https://wiki.postgresql.org/wiki/CTEReadme

• Later Join:
• https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-LATERAL

