NNNNNNNNNNNN

YELLO’S MISSION STATEMENT

Eliminating gaps in the
hiring experience

YELLO AT A GLANCE

* Yello founded in 2008 by Jason
Weingarten and Dan Bartfield

e [nitial focus on the campus and event
recruiting space

* Recruitment Marketing and Operations in a
single platform using mobile and web
applications

 Market leader with customers in all major
industries

 Consistent focus on innovation by listening
to clients

yello
_

—

OUR CLIENT PARTNERS

gwﬂmwuag«:rﬂmmn =! Microsoft wa@/zem & PEPSICO

] 'cll's'é lo' ' JPMORGAN CHASE & CO. w

——F

LOCKHEED MARTIN

EY

*MOCYS SM

./ m - facebook
Deutsche Bank a\%on COMCAST
Llello

_

T

2016 ITA CITYLIGHTS AWARDS

OUTSTANDING TECHNOLOGY DEVELOPMENT WINNER

—

ENGINEERING AT YELLO

*“50 Engineers

* Build mobile and web applications that

are scalable and secure.
* All development in Chicago

* Recruit heavily from universities

ENGINEERING STACK

.“
‘.‘

wmEramazon

NF webservices
React

osto s & clasticsearch "™
el

We’re Hiring

yello

BECOMING A sQL GURU

Stella Nisenbaum
Ste\\a.Nisenbaum@ye\\o.co

YELLO’S MISSION STATEMENT

Eliminating gaps in the
hiring experience

MARKET EXPERTISE

CLIENT FIRST CULTURE AWARD-WINNING
yello is proud 0 partner Yello’s Schedulind Solution Yello’'s |eadership team is
with clients ranging from was named T0P HR comprised of many former
Eortune 500 global product of 2015 by Human corporate recruiting and

o) h'\gh—growth
Magazine.

enterprises t
anies

early-stage comp

BECOMING A SQL GURU

AGENDA

* Syntax Overview

* Join Types

* Set Operators

* Filtered Aggregates

* Grouping Sets, Cube, and Rollup

e Subqueries

* Window Functions

* Common Table Expressions (CTE’s)
 Lateral Join

* Questions

yello

BECOMING A SQL GURU

QUERIES — SYNTAX OVERVIEW
When we think of Standard SQL Syntax...

SELECT expression
FROM table

WHERE condition
ORDER BY expression

BECOMING A SQL GURU

QUERIES - SYNTAX OVERVIEW

Or maybe we think...

SELECT expression
FROM table

[JOIN TYPE] table2
ON join_condition
WHERE condition
ORDER BY expression

yello

BECOMING A SQL GURU

QUERIES - SYNTAX OVERVIEW

Then we think...

SELECT expression
FROM table
JOIN_TYPE table2

ON join_condition
WHERE condition
GROUP BY expression
HAVING condition
ORDER BY expression

yello

BECOMING A SQL GURU

QUERIES - SYNTAX OVERVIEW

But really ...

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...]) 1]
[* | expression [[AS] output_name][, ...]]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[WINDOW window_name AS (window_definition) [, ...]]
[{UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator][NULLS { FIRST | LAST }][, ...]]
[LIMIT { count | ALL }]
[OFFSET start [ROW | ROWS]]
[FETCH { FIRST | NEXT }[count] { ROW | ROWS } ONLY]
[FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]][NOWAIT][...]]

yello

BECOMING A SQL GURU

QUERIES - SYNTAX OVERVIEW

where from_item can be one of:

[ONLY] table_name [*][[AS] alias [(column_alias [, ...])]1]

[LATERAL] (select) [AS] alias [(column_alias [, ...])]

with_query_name [[AS] alias [(column_alias [, ...])]]

[LATERAL] function_name ([argument [, ...]])
[WITH ORDINALITY][[AS] alias [(column_alias [, ...])]]

[LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition [, ...])

[LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])

[LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition [, ...]) 11[, ...])
[WITH ORDINALITY][[AS] alias [(column_alias [, ...])]]

from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

yello |

BECOMING A SQL GURU

QUERIES - SYNTAX OVERVIEW

and grouping_element can be one of:

()

expression

(expression [, ...])

ROLLUP ({ expression | (expression|[,...]) }[, ...])
CUBE ({ expression | (expression [, ...]) }[, ...])
GROUPING SETS (grouping_element [, ...])

and with_query is:

with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

TABLE [ONLY] table_name [*]

yello

BECOMING A SQL GURU

QUERIES - BASIC EXAMPLES

VALUES (1, 'one’), (2, 'two"), (3, 'three"); TABLE customers;
Is equivalent to:
1 one SELECT * FROM customers;
2 two

3 three

BECOMING A SQL GURU

JOIN TYPES

Inner Join:
Joins each row of the first table with each row from the second table for which the condition matches.
Unmatched rows are removed

Outer Join:
Joins each row from the one table with each row from the second table for which the condition matches.
Unmatched rows are added to the result set such that:
e Left: All rows from the left table are returned, with null values displayed for the right table
* Right: All rows from the right table are returned, with null values displayed for the left table
e Full: All rows from both tables are returned, with null values displayed for unmatched rows in
each table.

Cross Join:
Creates a Cartesian Product of two tables

yello

BECOMING A SQL GURU

CROSS JOINS: EXAMPLE

stores products
E Y
ch|cago coffee
2 dallas 2 tea
SELECT * FROM stores SELECT * FROM stores, products
CROSS JOIN products
Results:
T T L N LT
chicago coffee
1 chicago 2 tea
dallas 1 coffee
lleua 2 dallas 2 tea

_

BECOMING A SQL GURU

SEL%EERATIONS

S N [
Stella Nisenbaum Chicago 60605

2 Stephen Frost New York 10012 USA

3 Luke Daniels Stockholm 113 50 Sweden

4 Artem Okulik Minsk 220002 Belarus

suppliers

N S P P73 T
Herpetoculture, LLC Meriden 06451 300,000,000

2 Bodega Privada Madrid 28703 Spain 700,000,000
ExoTerra Montreal HO9X OA2 Canada 400,000,000

qello 4 Goose Island Beer, Co Chicago 60612 USA 250,000,000

—

BECOMING A SQL GURU

SET OPERATIONS: UNION VS UNION ALL

SELECT city FROM customers SELECT city FROM customers
UNION ALL UNION
SELECT city FROM suppliers SELECT city FROM suppliers
mm) Chicago mm) Chicago
New York New York
Stockholm Stockholm
Minsk Minsk
Meriden Meriden
Madrid Madrid
Montreal Montreal

eua ‘ Chicago

ll_

BECOMING A SQL GURU

SET OPERATIONS: EXCEPT VS INTERSECT

SELECT city FROM customers SELECT city FROM customers
EXCEPT INTERSECT
SELECT city FROM suppliers SELECT city FROM suppliers
New York Chicago
Stockholm

Minsk

BECOMING A SQL GURU

FILTERED AGGREGATES .4

Before: Now:
SELECT SELECT
Sum(revenue) as total_revenue Sum(revenue) as total_revenue
, Sum(Case , Sum(revenue) FILTER (where country = ‘USA’) as USA_revenue
when country = ‘USA’ FROM suppliers s
then revenue
else O

End) as USA_revenue
FROM suppliers s

yello

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUPs

Grouping Sets: Allows for the creation of sets wherein a subtotal is
calculated for each set

Rollup: Allows for the creation of a hierarchical grouping/subtotals starting
with the primary group, then the secondary and so on

Cube: Allows for the creation of subtotals for all possible groups (not only
hierarchical)

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUPs

orders
O o o
1 1 1 2016-01-15
2 1 3 2016-02-05 250
3 3 2 2016-01-25 85
4 3 4 2016-01-07 125
5 4 4 2016-02-19 65
6 4 1 2016-01-20 150
7 1 3 2016-02-17 300

yello

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUPs

SELECT
s.country
, S.supplier_name
, date_trunc('month’, o.order_date)::date as order_month
, c.customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c
ON o.customer _id = c.id
JOIN suppliers s
ON o.supplier _id = s.id
GROUP BY s.country , s.supplier name ,date_trunc('month’, o.order_date), c.customer_name

yello

BECOMING A SQL GURU

GROUPING SETS, CUBE, ROLLUPs

Results:
m-
Canada ExoTerra 2016-02-01 Stella Nisenbaum
Spain Bodega Privada 2016-01-01 Luke Daniels 85 85 1
USA s B 2016-01-01 Luke Daniels 125 125 1
Beer, Co
Goose Island)
USA 2016-02-01 Artem Okulik 65 65 1
Beer, Co
USA ['fg petoculture, 41 ¢ 51 01 Artem Okulik 150 150 1
USA ['Lecr petoculture,)¢ 01.01 Stella Nisenbaum 100 100 1

yello

BECOMING A SQL GURU

GROUPING SETSs

SELECT
s.supplier_name as supplier name
, date_trunc('month’, o.order_date)::date as order_month
, c.customer_name as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers ¢
ON o.customer _id = c.id
JOIN suppliers s
ON o.supplier_id =s.i
GROUP BY grouping sets (s.supplier_name,ldate_trunc('month', o.order_date)lc.customer_name,|())
ORDER BY grouping(supplier_name, customer_name, date _trunc('month’, o.order_date))

yello

BECOMING A SQL GURU

GROUPING SETSs

Results:

supplier_name order_month | customer_name

Bodega Privada 85 85 1
ExoTerra 550 275 2
Goose Island Beer, Co 190 95 2

T D T — e

Artem Okulik 215 108 2
Luke Daniels 210 105 2
r.,,,,,, &OtelENisenbaum. 0., /T
2016-02-01 615 205 3
Z016-01-01 460 115 7
T075 57 7

yello

BECOMING A SQL GURU

GROUPING SETSs

SELECT
Case when grouping(supplier_name) = 0
then s.supplier_name else 'All Suppliers' end as supplier_name
. Case when grouping(date_trunc(month', o.order_date)) = 0
then date_trunc(‘'month', o.order_date)::date::varchar else 'All Months' end as order_month
, Case when grouping(customer_name) =0
then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c
ON o.customer _id = c.id
JOIN suppliers s
ON o.supplier_id = s.id
GROUP BY grouping sets (s.supplier_name, date trunc(‘'month’, o.order_date),c.customer_name, ())
ORDER BY grouping(supplier_name, customer _name, date trunc('month’, o.order_date))

yello

BECOMING A SQL GURU

GROUPING SETSs

Results:

supplier_name order_month | customer_name

Bodega Privada All Months All Customers 85 85 1
ExoTerra All Months All Customers 550 275 2
Goose Island Beer, Co All Months All Customers 190 95 2

[Terpetocanare, tee. A wvonae. Aarcosoomete,.,mino o oonnenne >y

All Suppliers All Months Artem Okulik 215 108 2
All Suppliers All Months Luke Daniels 210 105 2

AT Suppners —— AlMonths — otella Nisenbaum o600 2, —0mm
All Suppliers 2016-02-01 All Customers 615 205 3

CAI Suppliers Z016-01-01 Al Customers 460 T15 q
AT-SUppITers AT IVIOTTTS AT CUStomers 1075 57 7

yello

BECOMING A SQL GURU

ROLLUPs

SELECT
Case when grouping(s.country) =0
then s.country else 'All Countries' end as supplier_country
, Case when grouping(supplier_name) = 0
then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(customer_name) =0
then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c
ON o.customer _id = c.id
JOIN suppliers s
ON o.supplier_id = s.id

|WHERE s.country in (USA. ‘SEain’l
GROUP BY rollup(s.country ,supplier_name ,customer_name)
yello

_

BECOMING A SQL GURU

ROLLUPs

Results:
supplier_country supplier_name customer_name
Spain Bodega Privada Luke Daniels 85 85 1
Spain Bodega Privada All Customers 85 85 1
Spain All Suppliers All Customers 85 85 1
USA Goose Island Beer, Co Artem Okulik 65 65 1
USA Goose Island Beer, Co Luke Daniels 125 125 1
USA Goose Island Beer, Co All Customers 190 95 2
USA Herpetoculture, LLC Artem Okulik 150 150 1
USA Herpetoculture, LLC Stella Nisenbaum 100 100 1
USA Herpetoculture, LLC All Customers 250 125 2
USA All Suppliers All Customers 440 110 4
lf@”O All Countries All Suppliers All Customers 1075 154 7

o

BECOMING A SQL GURU

ROLLUPs

SELECT

GROUP BY grouping sets (

(s.country, supplier_name, customer_name)
, (s.country, supplier_name)
, (s.country)

0

)

BECOMING A SQL GURU

CUBE¢-s)

SELECT
Case when grouping(supplier_name) =0
then s.supplier_name else 'All Suppliers' end as supplier _name
, Case when grouping(customer_name) = 0
then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c
ON o.customer _id = c.id
JOIN suppliers s

HN_Q.sup.pli.er_id = s.id
WHERFE ¢id in (1.3)

iGROUP BY cube(supplier name ,customer name)
ORDER BY grouping(supplier_name), supplier_name, grouping(customer_name), customer_name

yello

BECOMING A SQL GURU

CUBE¢-s)

Results:

supplier_name customer_name

Bodega Privada Luke Daniels 85 85 1
Bodega Privada All Customers 85 85 1
ExoTerra Stella Nisenbaum 550 275 2
ExoTerra All Customers 550 275 2
Goose Island Beer, Co Luke Daniels 125 125 1
Goose Island Beer, Co All Customers 125 125 1
Herpetoculture, LLC Stella Nisenbaum 100 100 1
Herpetoculture, LLC All Customers 100 100 1
All Suppliers Luke Daniels 210 105 2
All Suppliers Stella Nisenbaum 650 217 3
liello All Suppliers All Customers 860 172 5

_

BECOMING A SQL GURU

SUBQUERIES: UNCORRELATED

Uncorrelated subquery:
- Subquery calculates a constant result set for the upper query

- Executed only once
SELECT supplier_name, city

FROM suppliers s
WHERE s.country in (SELECT country FROM customers)

Herpetoculture, LLC Meriden

Goose Island Beer, Co Chicago

yello

BECOMING A SQL GURU

SUBQUERIES: CORRELATED

Correlated subquery:
- Subquery references variables from the upper query

- Subquery has to be re-executed for each row of the upper query
- Can often be re-written as a join

SELECT supplier_name, country

, (SELECT count(distinct id) FROM customers ¢ where c.country=s.country) cust_ct
FROM suppliers s

Herpetoculture, LLC USA 2
Bodega Privada Spain 0
ExoTerra Canada 0
Goose Island Beer, Co USA 2

yello

BECOMING A SQL GURU

WINDOW FUNCTIONS - BASICS

What is a window function?
A function which is applied to a set of rows defined by a window descriptor and returns a
single value for each row from the underlying query

When should you use a window function?
Any time you need to perform calculations or aggregations on your result set while
preserving row level detail

BECOMING A SQL GURU

WINDOW FUNCTIONS - SYNTAX

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER
window_name

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (
window_definition)

function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause) | OVER (window__definition)

Where window__definition is:

[existing_window_name |

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator][NULLS { FIRST | LAST }][, ...]]
[frame_clause]

{ RANGE | ROWS } frame_start
(leuo{ RANGE | ROWS } BETWEEN frame_start AND frame_end

BECOMING A SQL GURU

WINDOW FUNCTIONS - FRAME CLAUSE

Frame_clause can be one of :

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

Where frame_start can be one of: Where frame_end can be one of:
UNBOUNDED PRECEDING UNBOUNDED FOLLOWING
Value PRECEDING Value FOLLOWING

CURRENT ROW CURRENT ROW - (default)

When frame_clause is omitted, default to RANGE UNBOUNDED PRECEDING

yello

BECOMING A SQL GURU

WINDOW FUNCTIONS - BASIC EXAMPLE

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (PARTITION BY country)

FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000
Bodega Privada Spain 700,000,000 700,000,000
Herpetoculture, LLC USA 300,000,000 275,000,000
Goose Island Beer, Co USA 250,000,000 275,000,000

yello

BECOMING A SQL GURU

WINDOW FUNCTIONS - RANGE VS ROWS

With RANGE all duplicates are considered part of the same group and the function is run across all of
them, with the same result used for all members of the group.

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (ORDER BY country RANGE UNBOUNDED PRECEDING) ::int

FROM suppliers

supplier_name country revenue

ExoTerra Canada 400,000,000 400,000,000
Bodega Privada Spain 700,000,000 550,000,000
Herpetoculture, LLC USA 300,000,000 412,500,000

Goose Island Beer, Co USA 250,000,000 412,500,000

BECOMING A SQL GURU

WINDOW FUNCTIONS - RANGE VS ROWS

With ROWS, can get a “running” average even across duplicates within the ORDER BY

SELECT
supplier_name , country, revenue

, avg(revenue) OVER (ORDER BY country ROWS UNBOUNDED PRECEDING) ::int
FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000
Bodega Privada Spain 700,000,000 550,000,000
Herpetoculture, LLC USA 300,000,000 466,666,667
Goose Island Beer, Co USA 250,000,000 412,500,000

yello |

BECOMING A SQL GURU

WINDOW FUNCTIONS - WINDOW CLAUSE

SELECT

supplier_name, country, revenue

, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg

FROM suppliers
WINDOW mywindow as (PARTITION BY country)

ExoTerra Canada 400,000,000 400,000,000 400,000,000
Bodega Privada Spain 700,000,000 700,000,000 700,000,000
Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000
Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

yello

BECOMING A SQL GURU

WINDOW FUNCTIONS - ROW NUMBER

SELECT

Row_number() OVER () as row
,supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

1 ExoTerra Canada 400,000,000 400,000,000 400,000,000
2 Bodega Privada Spain 700,000,000 700,000,000 700,000,000
3 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000
4 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

yello

BECOMING A SQL GURU

WINDOW FUNCTIONS - RANK

SELECT
Rank() OVER (ORDER BY country desc) as rank

’ —_— 9 9

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

rank supplier_name country revenue sum avg

1 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

1 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

3 Bodega Privada Spain 700,000,000 700,000,000 700,000,000
ExoTerra Canada 400,000,000 400,000,000 400,000,000

yello

_

BECOMING A SQL GURU

WINDOW FUNCTIONS - RANK WITH ORDER BY

SELECT

Rank() OVER (ORDER BY country desc) as rank

, supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)
Order by supplier_name

3 Bodega Privada Spain 700,000,000 700,000,000 700,000,000
4 ExoTerra Canada 400,000,000 400,000,000 400,000,000
1 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000
1 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

yello

_

BECOMING A SQL GURU

WINDOW FUNCTIONS

Built in aggregates +

* row_number ()

* rank ()

* dense_rank ()
 percent_rank ()

e cume_dist ()

* ntile (hum_buckets integer)
* lag ()

 lead ()

e first_value ()

e last_value ()

* nth_value (value any, nth integer)

BECOMING A SQL GURU

CTE’S - INTRODUCTION

e CTE =Common Table Expression
* Defined by a WITH clause
* Can be seen as a temp table or view which is private to a given query
e Can be recursive/self referencing
e Act as an optimization fence
Syntax:
[WITH [RECURSIVE] with_query [, ...]]

Where with_query is:
with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)
Recursion requires the following syntax within the WITH clause:

non_recursive_term UNION [ALL] recursive_term

yello |

BECOMING A SQL GURU

CTE’S — NON RECURSIVE EXAMPLE

WITH cte_c (country, customer_ct)
as (SELECT country, count(distinct id) as customer_ct
FROM customers
GROUP BY country
)
, cte_s (country, supplier_ct)
as (SELECT country, count(distinct id) as supplier_ct
FROM suppliers
GROUP BY country)

SELECT coalesce(c.country, s.country) as country, customer_ct, supplier_ct
FROM cte_cc

FULL JOIN cte_s s USING (country)

yello

BECOMING A SQL GURU

CTE’S — NON RECURSIVE EXAMPLE

Results:

o aoner.o ——swpler

Belarus 1
Sweden 1
USA 2 2
Spain 1

Canada 1

BECOMING A SQL GURU

CTE’S - RECURSIVE EXAMPLE

List all numbers from 1 to 100:

WITH RECURSIVE cte_name(n)
AS
(VALUES(1)
UNION
SELECT n+1
FROM cte_name
WHERE n<100)
SELECT * FROM cte_name ORDER by n

yello

BECOMING A SQL GURU

CTE’S — RECURSIVE QUERY EVALUATION

1. Evaluate the non-recursive term, discarding duplicate rows (for UNION). Include all remaining rows in the
result of the recursive query as well as in a temporary working table.

2. While the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self reference. Discard duplicate rows(for UNION). Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

BECOMING A SQL GURU

CTE’S — ANOTHER RECURSIVE EXAMPLE

Parts
O S T S

1 Door

2 Car Engine 1

3 Car Wheel 4

4 Car Steering wheel 1

5 Cylinder head Screw 14

6 Door Window 1

7 Engine Cylinder head 1

8 Wheel Screw 5

yello

BECOMING A SQL GURU

CTE’S — ANOTHER RECURSIVE EXAMPLE

Goal: Number of screws needed to assemble a car.

WITH RECURSIVE list(whole, part, ct)
AS
-- non recursive query, assign results to working table and results table

(SELECT whole, part, count as ct FROM parts WHERE whole = ‘car’

-- recursive query with self reference; self reference substituted by working table
-- assigned to intermediary table , working table and appended to results table
UNION
SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte
JOIN parts a

ON a.whole = cte.part

-- empty intermediate table and execute recursive term as long as working table contains any tuple

)
ello | oy
SELECT sum(ct) FROM list WHERE iart = screﬁ _

BECOMING A SQL GURU

CTE’S — CAVEATS

* Recursive queries

actually use iteration

* Union vs Union All
* Only one recursive self-reference allowed

* Primary query eva
* Name of the WITH

uates subqueries defined by WITH only once
query hides any ‘real’ table

* No aggregates, G

ROUP BY, HAVING, ORDER BY, LIMIT, OFFSET

allowed in a recursive query
* No mutual recursive WITH queries allowed
* Recursive references must not be part of an OUTER JOIN
* Optimization fence

yello

_

BECOMING A SQL GURU

CTE’S - WRITABLE CTE

Delete from one table and write into another...

WITH archive_rows(whole, part, count)
AS

(DELETE FROM parts

WHERE whole = ‘car’

RETURNING *

)

INSERT INTO parts_archive

SELECT * FROM archive_rows;

yello |

BECOMING A SQL GURU

CTE’S — RECURSIVE WRITABLE CTE

WITH RECURSIVE list(whole, part, ct)
AS

(SELECT whole, part, count as ct
FROM parts

WHERE whole = ‘car’

UNION

SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte

JOIN parts a ON a.whole = cte.part

)
INSERT INTO car_parts_list

SELECT * FROM list

yello

BECOMING A SQL GURU

CTE’S — RECURSIVE WRITABLE CTE
SELECT * FROM car_parts_list

Whole [Pt o

car Engine 1
car Wheel 4
car Doors 4
car Steering wheel 1
car Cylinder head 1
car Screw 20
car window 4
car Screw 14

yello

BECOMING A SQL GURU

LATERAL 3

LATERAL is a new(ish) JOIN method which allows a subquery in one part of

the FROM clause to reference columns from earlier items in the FROM
clause

* Refer to earlier table
* Refer to earlier subquery
e Refer to earlier set returning function (SRF)

- Implicitly added when a SRF is referring to an earlier item in the
FROM clause

BECOMING A SQL GURU

LATERAL - SET RETURNING FUNCTION EXAMPLE

CREATE TABLE numbers Results:

e Vaxoum | Generate_seres
SELECT generate_series as max_num

FROM generate_series(1,10); - s
"""""""""""""""""""""""""""""""""" 2 1

SELECT *

FROM numbers, 2 -

LATERAL generate_series(1,max_num); 3 1

Same as: 3 2

SELECT * 3 3

FROM numbers,
generate_series(1,max_num);

yello

_

BECOMING A SQL GURU

LATERAL - SUBQUERY EXAMPLE
This DOES NOT work:

SELECT c.customer_name
, c.country
, S.supplier_name
, S.country
FROM
(SELECT *
FROM customers
WHERE customer_name like ‘S%'
) C
JOIN
(SELECT *
EROM Qllppliprc g
WHERE s.country = c.country) s
ON true

yello

BECOMING A SQL GURU

LATERAL - SUBQUERY EXAMPLE

“‘ERROR: invalid reference to FROM-clause entry
for table "c" Hint: There is an entry for table "c",
but it cannot be referenced from this part of the

query.”

yello

BECOMING A SQL GURU

LATERAL - SUBQUERY EXAMPLE

This DOES NOT work:

SELECT c.customer_name
, c.country
, S.supplier_name
, S.country
FROM
(SELECT *
FROM customers
WHERE customer_name like ‘S%'
) C
JOIN
(SELECT *
FROM suppliers s
WHERE s.country = c.country) s
ON true

yello

_

This DOES work:

SELECT c.customer_name
, c.country
, S.supplier_name
, S.country
FROM
(SELECT *
FROM customers
WHERE customer_name like ‘S%'
) C

JOIN LATERAL

(SELECT *

FROM suppliers s

WHERE s.country = c.country) s
ON true

BECOMING A SQL GURU

LATERAL - SUBQUERY EXAMPLE

Results:

Customer_name Country Supplier_name Country

Stephen Frost USA Herpetoculture, LLC USA
Stella Nisenbaum USA Herpetoculture, LLC USA
Stephen Frost USA Goose Island Beer, Co USA
Stella Nisenbaum USA Goose Island Beer, Co USA

yello

BECOMING A SQL GURU

LATERAL - SUBQUERY EXAMPLE

We can re-write this logic using a correlated subquery...

SELECT
c.customer_name
, c.country
, S.supplier_name
, S.country
FROM (SELECT * FROM customers
WHERE customer_name like 'S%') c
JOIN suppliers s
ON s.id =ANY(SELECT id FROM suppliers
WHERE c.country = country)

But it’s pretty messy.

yello

BECOMING A SQL GURU

THANK YOU!

Questions?

BECOMING A SQL GURU

REFERENCES

* Join Types :
* https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html

* Set Operators:

* https://www.postgresql.org/docs/9.5/static/queries-union.html

* Filtered Aggregates:
* https://www.postgresql.org/docs/9.5/static/sql-expressions.htmI#SYNTAX-AGGREGATES

* Grouping Sets, Cube, and Rollup:
* https://www.postgresql.org/docs/devel/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

* Subqueries:
* https://momjian.us/main/writings/pgsql/aw_pgsql_book/node80.html

* Window Functions:
* https://www.postgresql.org/docs/9.5/static/tutorial-window.html

« Common Table Expressions (CTE’s):
* https://www.postgresql.org/docs/9.5/static/queries-with.html
* https://wiki.postgresql.org/wiki/CTEReadme

 Later Join:
ello * https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-LATERAL

ll_

