
1CONFIDENTIAL 1CONFIDENTIAL

PACKER.
TO BE OR NOT TO BE?

About me

• Devops lead with more than 8 years of experience in

system administration which includes

•Media servers

•Load balancing technologies and cloud technologies-

•Management and automation

Iurii Medvedev

EPAM Systems,
Senior Systems

Engineer

- Pre-baked machine images

- What is it Packer? Advantages Of Using Packer

- Support Platforms and Packer Workflow

- Local build vs cloud’s build

- Examples

- Q&A

Agenda.

•What is pre-backer images?

•What problem do you can have with pre-backer?

Pre-baked machine images.

•Packer is a tool for creating machine and container images for multiple platforms

from a single source configuration.

•A machine image is a single static unit that contains a pre-configured operating

system and installed software which is used to quickly create new running machines.

•Packer only builds images. It does not attempt to manage them in any way. After

they're built, it is up to you to launch or destroy them

Why use Packer?

•Super fast infrastructure deployment - Packer images allow you to launch completely

provisioned and configured machines in seconds. This benefits not only production,

but development as well.

Advantages Of Using Packer

•Multi-provider portability - Packer creates identical images for multiple platforms,

you can run production in AWS, staging/QA in a private cloud like OpenStack, and

development in desktop virtualization solutions such as VMware or VirtualBox. Each

environment is running an identical machine image, giving ultimate portability.

Advantages Of Using Packer

•Improved stability - Packer installs and configures all the software for a machine at

the time the image is built. If there are bugs in these scripts, they'll be caught early,

rather later when a machine is launched.

Advantages Of Using Packer

•Greater testability - After a machine image is built, that machine image can be

quickly launched and smoke tested to verify that things appear to be working. If they

are, you can be confident that any other machines launched from that image will

function properly.

Advantages Of Using Packer

•Continuous Delivery - Add Packer in the middle of your continuous delivery pipeline.

It can be used to generate new machine images for multiple platforms on every

change to Chef/Puppet. As part of this pipeline, the newly created images can then be

launched and tested, verifying the infrastructure changes work. If the tests pass, you

can be confident that the image will work when deployed. This brings a new level of

stability and testability to infrastructure changes.

Use cases

•Dev/Prod Parity - Packer helps keep development, staging, and production as similar

as possible. Packer can be used to generate images for multiple platforms at the same

time. So if you use AWS for production and Docker for development, you can

generate both an AMI and a VMware machine using Packer at the same time from

the same template. Mix this in with the continuous delivery use case above, and you

have a pretty slick system for consistent work environments from development all

the way through to production.

Use cases

•Appliance/Demo Creation - Since Packer creates consistent images for multiple

platforms in parallel, it is perfect for creating appliances and disposable product

demos. As your software changes, you can automatically create appliances with the

software pre-installed. Potential users can then get started with your software by

deploying it to the environment of their choice. Packaging up software with complex

requirements has never been so easy.

Use cases

•Amazon EC2 (AMI)

•CloudStack

•OpenStack

•DigitalOcean

•Docker

•Google Compute Engine

•Parallels

•QEMU

•VirtualBox (OVF)

•VMware (VMX)

Supported Platforms

•Ansible Local

•Ansible Remote

•Chef Client

•ChefSolo

•Converge

•File

•PowerShell

•Puppet Masterless

•Puppet Server

•Salt Masterless

•Shell

•Shell (Local)

•Windows Shell

•Windows Restart

Supported Provisioners

•Amazon Import

•Artifice

•Atlas

•Compress

•Checksum

•Docker Import

•Docker Push

•Docker Save

•Docker Tag

•Google Compute Export

•Manifest

•Shell (Local)

•Vagrant

•Vagrant Cloud

•vSphere

Supported Post-Processors

•Templates: JSON files containing the build information

•Builders: Platform specific building configuration

•Provisioners: Tools that install software after the initial OS

install

•Post-processors: Actions to happen after the image has been

built

Terminology

Workflow

Build

Provision

Post Process

AWS VirtualBoxVmWare Docker

Building

5

Developer

DevOps

Ubuntu 16.04 builder

"type": "virtualbox-iso",
"boot_command": [
 "<enter><wait><f6><esc><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
 "<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>",
 "/install/vmlinuz<wait>",
 " auto<wait>",
 " console-setup/ask_detect=false<wait>",
 " console-setup/layoutcode=us<wait>",
 " console-setup/modelcode=pc105<wait>",
 " debconf/frontend=noninteractive<wait>",
 " debian-installer=en_US<wait>",
 " fb=false<wait>",
 " initrd=/install/initrd.gz<wait>",
 " kbd-chooser/method=us<wait>",
 " keyboard-configuration/layout=USA<wait>",
 " keyboard-configuration/variant=USA<wait>",
 " locale=en_US<wait>",
 " netcfg/get_domain=vm<wait>",
 " netcfg/get_hostname=vagrant<wait>",
 " grub-installer/bootdev=/dev/sda<wait>",
 " noapic<wait>",
 " preseed/url=http://{{ .HTTPIP }}:{{ .HTTPPort }}/preseed.cfg",
 " -- <wait>",
 "<enter><wait>"
],

Ubuntu 16.04 builder

"boot_wait": "10s",

"disk_size": 61920,

"guest_os_type": "Ubuntu_64",

"headless": false,

"http_directory": "http",

"iso_urls": [

 "iso/ubuntu-16.04.2-server-amd64.iso",

 "http://url/ubuntu-16.04.2-server-amd64.iso"

],

"iso_checksum_type": "sha256",

"iso_checksum": "check_summ",

"ssh_username": "vagrant",

"ssh_password": "vagrant",

"ssh_port": 22,

"ssh_wait_timeout": "10000s",

"shutdown_command": "echo 'vagrant'|sudo -S shutdown -P now",

"guest_additions_path": "VBoxGuestAdditions_{{.Version}}.iso",

"virtualbox_version_file": ".vbox_version",

"vm_name": "packer-ubuntu-16.04-postgresql",

Ubuntu 16.04 provisioners

"provisioners": [

 {

 "override": {

 "virtualbox-iso": {

 "execute_command": "echo 'vagrant' | sudo -S sh '{{ .Path }}'"

 }

 },

 "scripts": [

 "scripts/root_setup.sh"

],

 "type": "shell"

 },

 {

 "scripts": [

 "scripts/setup.sh"

],

 "type": "shell"

 }

],

root_setup.sh

#!/bin/bash
set -e
PG_VERSION=9.5
PG_HBA="/etc/postgresql/$PG_VERSION/main/pg_hba.conf"
sudo apt-get update -y -qq > /dev/null
sudo apt-get upgrade -y -qq > /dev/null
sudo apt-get -y -q install linux-headers-$(uname -r) build-essential dkms nfs-common curl wget git vim
groupadd -r admin
usermod -a -G admin vagrant
cp /etc/sudoers /etc/sudoers.orig
sed -i -e '/Defaults\s\+env_reset/a Defaults\texempt_group=admin' /etc/sudoers
sed -i -e 's/%admin ALL=(ALL) ALL/%admin ALL=NOPASSWD:ALL/g' /etc/sudoers

Install Postgresql
sudo apt-get -y -q install postgresql libpq-dev postgresql-contrib postgresql-client

Set Password to test for user postgres and simple configurations
sudo update-rc.d postgresql enable
sudo echo "local all postgres md5" > "$PG_HBA"
sudo echo "host all all all trust" >> "$PG_HBA"
sudo -u postgres psql -c "ALTER USER postgres WITH PASSWORD 'test';"

setup.sh

#!/bin/bash

set -e

Installing vagrant keys

mkdir ~/.ssh

chmod 700 ~/.ssh

cd ~/.ssh

wget --no-check-certificate \

'https://raw.github.com/mitchellh/vagrant/master/keys/vagrant.pub' -O authorized_keys

chmod 600 ~/.ssh/authorized_keys

chown -R vagrant ~/.ssh

Ubuntu 16.04 post-processors

"post-processors": [[

 {

 "type": "vagrant"

 },

 {

 "type":"webdav",

 "url": "http://example.com/upload/"

 }]

]

WebDav для boxes

server {

 listen 80;

 server_name example.com;

location / {

 dav_methods PUT DELETE MKCOL COPY MOVE;

 create_full_put_path on;

 dav_access group:rw all:r;

 auth_basic "Please login for access";

 auth_basic_user_file /srv/.passwd.dav;

 autoindex on;

 client_max_body_size 0;

 root /srv/vagrant;

 }

}

Использование webdav для Vagrant box

#Загружаем box в репозиторий
curl -T ./vagrant.box http://username:password@example.com/vagrant.box

#Пример использования
mkdir my_cool_box

cd my_cool_box

vagrant init my_cool_box http://username:password@example.com/vagrant.box

vagrant up

#Удаление box

curl -X DELETE http://username:password@example.com/vagrant.box

THANK YOU FOR ATTENTION

