

Fact-Based Indexing

Lothar Flatz – Senior Principal Consultant

OG*h*

diso

Diso AG – The Swiss Data and Cloud Expert

May I introduce myself

- » 25 Year Oracle Database experience (starting with Version 5)
- » 15 Years Oracle Employee
- » Oak Table Member
- » Ex-Real World Performance Group
- » Oracle ACE
- » Signature Project: PVSS (CERN)
- » US 8103658 B2 patent with Björn Engsig
- » Senior Principal Consultant at Diso AG

About Diso AG

- » Founded in 1996, 40 employees
- » Located in Gümligen (Bern), Switzerland
- » Portfolio:
 - Cloud Computing
 - Software Development
 - IT Consulting
 - Managed Services
 - Project Implementation
 - System Optimization

One of Codd's famous rules:

 The system must support an online, inline, relational catalog that is accessible to authorized users by means of their regular query language. That is, users must be able to access the database's structure (catalog) using the same query language that they use to access the database's data «

Codd, Edgar Frank (14 October 1985), "Is Your DBMS Really Relational?" ComputerWorld

Fact-based Indexing

The database has valuable information

Fact-based Indexing

Let's go and find it!

Raiders of the data dictionary -Indexing for the workload

000

The idea

A consequential coffee break

"I bet, that at minimum 30% of our indexes are superfluous. I would prefer to have them all double checked."

Everybody knows Indexing

Some basic rules, please...

... no religious discussions!

What we have

The usual malaise

- » Developers define indexes
- They use a rule of thumb or their gut feeling
- Quite often they never see the application under real load

What results

Our case

- » Very complex data model
- » Never ending performance trouble

We want to stop the issues once and for all!

Can we automate this?

» First, while the automated tools reduce the complexity of the physical design process, it is still nontrivial to identify a representative workload that can be used to drive the physical design in its entirety. Second, automated tools do not consider all factors that impact physical design (e.g., the impact of replication architectures) «

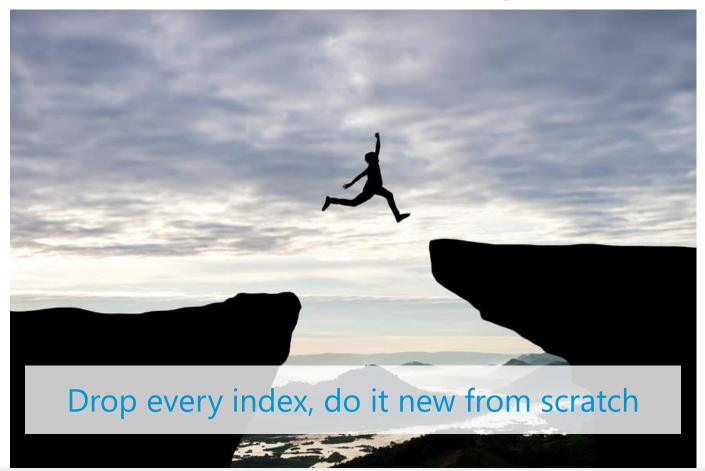
Bruno, N. and Chaudhuri, S. 2007. Physical design refinement: The 'merge-reduce' approach. ACM Trans. Database Syst. 32, 4 (Nov. 2007)

Who can contribute?

- » Developer (software vendor)
- » DBAs
- » Database consultant

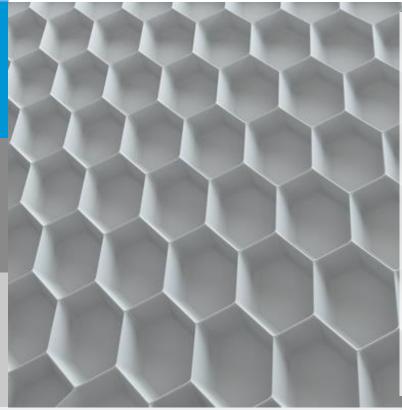
Quality

Target



- » Complete
- » Non-redundant
- » Minimal
- » Efficient

Patch or build ?


Not incremental, but complete

First Step

» Naming convention

- » Index building rules based on design principles
- » Foreign keys (to index or not to index)
- Physical attributes (table spaces)

OGh

Indexing for the workload

We need to cover processing

Collect data

- » Minimum a month
- Collect on daily, weekly and monthly processing
- » Various sources

Find the metainformation

Sources

» Sys.col_usage\$

» V\$sql_plan

- DBA_HIST_SQL_PLAN
- » V\$SQL

 \rightarrow

- https://blogs.oracle.com/optimizer/entry/ho w_do_i_know_what_extended_statistics_are_n eeded_for_a_given_workload
- » Column statistics

What is important?

Column Statistics

COLUMN_NAME	EQUALITY_PREDS	RANGE_PREDS	LIKE_PREDS	EQUIJOIN_PREDS
KUND ID	129	0	0	165
KUND STATUS	165	0	0	0
KUND CLASSID	0	0	0	154
KUND MANDANT	107	1	0	10
KUND TYPE	104	0	0	0
KUND FAMILIENNR	90	0	0	0
KUND GEBURTSTAG	84	0	0	0
KUND POTFAMILIENNR	84	0	0	0
KUND_VERSICHERTENNR	67	0	0	1

What is selective?

Column Statistics

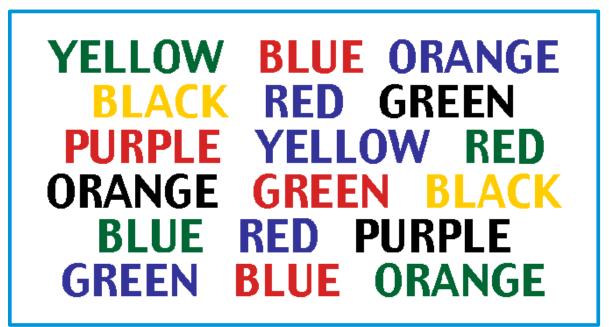
Column Name	Distinct Values	Density	NUM_BUCKETS
KUND_VERSICHERTENNR	3,191,680	0	1
KUND_GPANR	2,683,264	0	1
KUND_FAMILIENNR	1,265,369	0	1
KUND_BEZEICHNER	1,228,595	0	200
KUND_STRASSE	449,653	0	198
KUND_POTFAMILIENNR	197,732	0	200
KUND_NAME	157,774	0	199
KUND ROOTID	68,922	0	1
KUND VORNAME	66,494	0	195
KUND GEBURTSTAG	36,520	0	200
KUND KVNR	10,227	0	116
KUND ORT	8,964	0	174
KUND PLZ	4,242	0	200
KUND MANDANT	28	0	27
KUND_TYPE	6	0	5

Search combinations

Collected from v\$sql_plan

COL_STR	Number Querie	S	EXECUTIONS
KUND_ID		84	3408270
KUND_TYPE,NLS_UPPER(KUND_BEZEICHNER),NLS_UPPER(KUND_KVNR),NLS_UPPER(KO NT_VERSICHERTENNR)		1	372568
KUND FAMILIENNR, KUND ID, KUND MANDANT		17	175198
KUND FAMILIENNR, KUND ID, KUND MANDANT, KUND POTFAMILIENNR		17	27890
KUND ID, KUND POTFAMILIENNR		2	24946
KUND TYPE,NLS UPPER(KUND NAME),NLS UPPER(KUND VORNAME)		1	11920
KUND FAMILIENNR		2	11879
KUND ID, KUND TYPE		1	10029
KUND FAMILIENNR, KUND POTFAMILIENNR		2	6654
KUND GEBURTSTAG, KUND TYPE, NLS UPPER (KUND PLZ)		1	3862
KUND TYPE, KUND VERSICHERTENNR		2	2936
KUND_POTFAMILIENNR		2	368

What was a feeling


All information is on the table...

... we just have to organize it

Brain block, got stuck?

Look at the chart and say the **COLOR** and not the word.

Your right brain tries to say the color while your left brain insist on reading the word.

Words blocking the flow

How do I get out of it?

Let go your conscious self and act on instinct.

Order and conquer

There it is ...

COLUMN_NAME	EQUALITY_PREDS RANG	E_PREDS LIKE	_PREDS EQUIJ	JOIN_PREDS	Rank
KUND ID	129	0	0	165	
KUND STATUS	165	0	0	0	, 1
KUND CLASSID	0	0	0	154	2
KUND MANDANT	107	1	0	10	3
KUND TYPE	104	0	0	0	4
KUND FAMILIENNR	90	0	0	0	-
KUND_GEBURTSTAG	84	0	0	0	5
KUND_POTFAMILIENNR	84	0	0	0	6
KUND_VERSICHERTENNR	67	0	0	1	7

KUND FAMILIENNR, KUND ID, KUND MANDANT

KUND ID, KUND MANDANT, KUND FAMILIENNR

All you need is some repeating structure. Arrange the columns such that reuse is most likely

Eliminate superfluous indexes

Combine indexes when possible

{last name, first name, City}
{last name, first name, ZIP}

{last name, first name, City, ZIP}

Compare: Jonathan Lewis's Index usage

Indexing for the Workload

Implement

- » Generate create index scripts
- » Drop all existing indexes
- » Build indexing from scratch

Test

» Loadtests (Batch)

» RAT

Diso AG – The Swiss Data and Cloud Expert

diso

Wrap up

Close remaining gaps

- » Missing indexes
- » Improvable indexes
- » Manual patching

Indexing for the Workload

Results

- » Less index space (30%)
- » Faster batch programs
- » Higher plan stability
- » 90% less memory according to software vendor recommendation

Finally

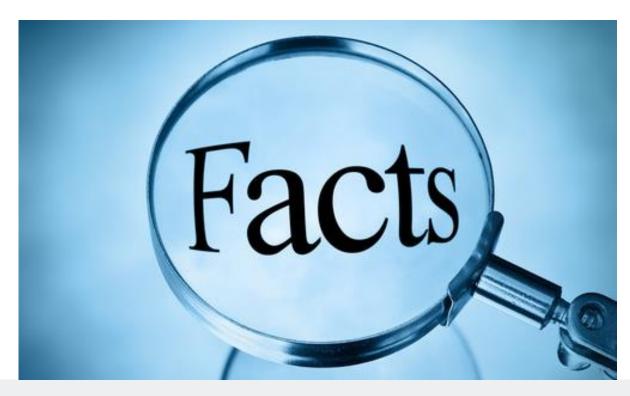
Done !

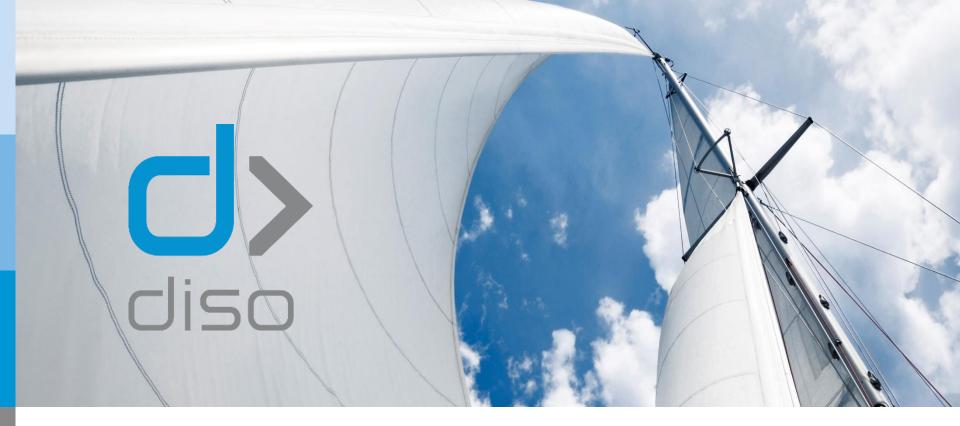
- » The issues did not come back
- » They were resolved once and for all

7 years later

The DBAs at (company where indexing was changed) are looking so relaxed. I want that too! «

A DBA group leader running that same software visiting the site





No Fairy Tales:

There are no alternative to hard facts

Thank you very much for your attention!

Do not hesitate to contact me for more information.

Lothar Flatz Diso AG Morgenstrasse 1 <u>info@diso.ch</u> 3073 Gümligen / CH www.diso.ch

Phone +41 31 958 90 90

