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Introduction

e Dave Cramer

* Work for OpenSCG supporting PostgreSQL

* Maintainer for the JDBC driver since 1999

e There are many options for connecting

* Many of them | didn’t totally understand

* This talk hopes to unveil some of the more interesting ones
* And explain how they work.
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Overview

 History of the driver
Connecting to the driver
Under utilized features
Performance tips

Latest Release major features
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History

* Originally written by Peter Mount in 1997

e Supported JDBC 1.2

1997 JDBC 1.2 Java 1.1

1999 JDBC 2.1 Java 1.2

e 2001 JDBC 3.0 Java1.4

e 2006 JDBC 4.0 Javab

« 2011 JDBC 4.1 Java7

« 2014 JDBC 4.2 Java8

« 2017 JDBC 4.3 Java 9 (Maybe ?)

e Each one of these were incremental additions to the interface
e Requiring additional concrete implementations of the spec to be implemented
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Connecting to the server
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URL options

* jdbc:postgresql:

* Connects to localhost, port 5432, database specified in user
jdbc:postgresql://host/

e Connects to <host>, port 5432, and database specified in user
jdbc:postgresql://host:port/

* Connects to <host><port> and database specified in user
jdbc:postgresql:database
jdbc:postgresql://host:port/database
jdbc:postgresql://host1:port, host2:port/database
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Connection Properties

- PG _DBNAME
- PG _DBHOST
- PG_DBPORT

These can be used in the following manner

Properties props = new Properties();
props.setProperty(PGProperty.PG_DBNAME.getName(),"test");
props.setProperty(PGProperty.PG_HOST.getName(),"localhost");
props.setProperty(PGProperty.PG_PORT.getName(),"5432");

props.setProperty("user”,"davec");
props.setProperty("password”, "");
Connection connection = DriverManager.getConnection("jdbc:postgresql:”, props);
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Logging
* loggerLevel = OFF|IDEBUG|TRACE
* Enables java.util.logging.Logger DEBUG=FINE,
TRACE=FINEST
* Not intended for SQL logging but rather to debug
the driver
* loggerFile=<filename> the file to output the log to. If
this is not set then the output will be written to the
console.
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Logging continued

* We will honour DriverManager.setLogStream or
DriverManager.setLogWriter

* Parent logger is org.postgresq|

* Since we are using java.util.Logging, we can use a
properties file to configure logging

* handlers=java.util.logging.FileHandler

 org.postgresql.level=FINEST

e java —Djava.util.logging.config.file=...
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Logging continued

* logUnclosedConnections=boolean

* Provides an easy way to find connection leaks

e If this is turned on we track connection opening. If
the finalizer is reached and the connection is still
open the stacktrace message is printed out.
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Autosave

e autosave = never | always | conservative

* PostgreSQL transaction semantics all or nothing. This is not always desirable

* autosave=always will create a savepoint for every statement in a transaction.

* The effect of which means that if you do

* Insert into invoice _header ...

* Insert into invoice lineitem ...

* If the insert into invoice lineitem fails the header will still be valid.

* In conservative mode if the driver determines that reparsing the query will work
then it will be reparsed and retried.
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Binary Transfer

 binaryTransferEnable=comma separated list of oid’s
or names

* binaryTransferDisable

e Currently the driver will use binary mode for most
built-in types.
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preferQueryMode

* simple
* Fewer round trips to db no bind, no parse
» Required for replication connection
» extended
« Default creates a server prepared statement,
uses parse, bind and execute.
* Protects against sql injection
» Possible to re-use the statement
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preferQueryMode

» extendedForPrepared
* Does not use extended for statements, only
prepared statements
« Potentially faster execution of statements
« extendedCacheEverything
» Uses extended and caches even simple
statements such as ‘select a from tbl’ which is
normally not cached
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defaultRowFetchSize=int

» Default is 0 which means fetch all rows
* This is sometimes surprising and can result in
out of memory errors
* |f set *AND* autocommit=false THEN will limit the
number of rows per fetc
 Potentially significant performance boost
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stringtype=varchar|unspecified

« The default is varchar, which tells the server
that strings are actually strlngs'
* You can use stringtype=‘unspecified’

« Usefull if you have an eX|st|ng application
that uses setString(‘1234’) to set an integer
column.

« Server will attempt to cast the “string” to the
appropriate type.
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ApplicationName=String

 sets the application name

 Servers version 9.0 and greater

« Useful for logging and seeing which
connections are yours in pg_stat activity, etc.
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readOnly=boolean

« The default is false

e True sends ser sessioN CHARACTERISTICS AS TRANSACTION READ ONLY
to the server.

* This blocks any writes to persistent tables,
intbelrestingly you can still write to a temporary
table.
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disableColumnSanitizer=boolean

e columnSanitizer folds column names to lower
case.

e Column names like FirstName become
firsthame.

* Resultset.getInt(“firstname”)

 default is to sanitize names

OpenSCG O BIGSQL



assumeMinServerVersion=3tring

« Currently there are only 2 use cases
* 9.0 which will enable
* ApplicationName=ApplicationName
(defaults to PostgreSQL JDBC Driver)
« sets extra float digits to 3
* 9.4 necessary for replication connections
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currentSchema=3String

* by default the current schema will be “public”

« If you want to refer to a table in a different
schema it would have to be specified by
schema.table

 If you set this connection property to “audit” for
example instead of “select * from audit.log” you
could use select * from log;
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reWriteBatchedlnserts=true

* Enables the driver to optimize batch inserts by
changing multiple insert statements into one
iInsert statement.

« Multiple statements such as “insert into tab1
values (1,2,3);”

* Rewritten as “insert into tab1 values (1,2,3),
(4,5,06)
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Connection Failover

« Specify multiple hosts in the connection string

« “jdbc:postgresql://host1:port1,host2:port2/
database”

« By default this will attempt to make connections
to each host until it succeeds
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Connection Failover tuning

« targetServerType=master, slave, preferSlave
« Observes it server allows writes to pick
« preferSlave will try slaves first then fall back

to master

* loadBalanceHosts=boolean will randomly pick
from suitable candidates

* hostRecheckSeconds=number of seconds
between checking status (read or write) of hosts
default is 10 seconds
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replication=database, true

* Tells the backend to go into walsender mode

« Simple query mode, subset of commands

« Setting to database enables logical replication
for that database

* Must be accompanied by
assumMinServerVersion="9.4" and
preferQueryMode="simple”
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Performance tricks

* setFetchSize
* rewriteBatchlnserts
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Set FetchSize performance

* Fetch a large amount of data with different fetch sizes
public static final String QUERY = "SELECT t FROM number";

@Benchmark
public void test(Blackhole blackhole, PgStatStatements pgStatStatements) throws SQLException {

pgStatStatements.setTestName(QueryBenchmarks.JIMHTestNameFromClass(_6_String NoAutocommit.class));

QueryUtil.executeProcessQueryNoAutocommit (QUERY, resultSet -> {
while (resultSet.next()) {
blackhole.consume(resultSet.getString(1));
}
})s
}

// Used to fetch rows in batches from the db. Will only work if the connection does not use
AutoCommit
PGProperty.DEFAULT_ROW_FETCH_SIZE.set(properties, FETCH_SIZE);
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Time it takes to fetch 1M rows
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What are the options for inserting lots of data

* For each row insertExecute this is the slowest

 For each row insertBatch this would be ideal

 Insert into foo (i,j) values (1,’one’), (2,'two’) .... (n,’n’) hand rolled code
e Copy into foo from stdin...
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JDBC micro benchmark suite

Java 1.8 60

Core i7 2.8GHz

PostgreSQL 9.6
https://github.com/pgjdbc/pgidbc/tree/master/ubenchmark
create table batch_perf _test(a int4, b varchar(100), c int4)

Table "public.batch_perf_test”

Cquan|r Type
a integer

character varying(100)
(0] integer
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INSERT Batch 1 row at a time

For each row Insert into perf (a,b,c) values (?,?,7?)

After N rows executeBatch

Normal mode this executes N inserts, not any faster than
Looping over N inserts without batch mode
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NSERT Batch N rows at a time

For each row Insert into perf (a,b,c) values (?,?,?), (?,7,?), (?,7,7), (?,?,?)
After N/ rows_at_a time rows executeBatch
Given 1000 (N) rows if we insert them 100(rows_at_a_time) , end up inserting 10

rows 100 wide
More data inserted per statement, less statements
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NSERT Batch with insertRewrite

For each row Insert into perf (a,b,c) values (?,?,7?)
After N rows executeBatch
Same as last slide except we set the connection parameter insertRewrite=true

As of version 1209 this is has been enabled
Same as insert into foo (i,j) values (1,’'one’), (2,'two’) .... (n,’n’) except the driver
does it for you.
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Copy

* Loop over the rows creating the input string in memory
e Build a string in memory which looks like 0\tsO\tO\n1\ts1\t1\n....

* The string will end up being nrows / rows_at_a_time long

* Use the copy API to copy this into the table
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Hand rolled insert struct N structs at a time

e Insert into batch_perf test select * from unnest (?::batch_perf test[])
For N rows setString to {(1,s1,1)",(2,s2,2)",’(3,s3,3)"}

Add Batch

executeBatch

The query that gets executes look like:

Insert into batch_perf test select *
from unnest ({"(1,s1,1)",7(2,s2,2)",’(3,s3,3)"} ::batch_perf _test[])
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Results

Batch size of 128
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Conclusion

 Compared to batch inserts, plain inserts are very slow for
large amounts of data

OpenSCG O BIGSQL

37



Results

1024 rows different batch sizes
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How not to use JDBC (unfortunately typical)

* Open connection

* Prepare statement ‘select * from foo where id=?’

* preparedStatment.executeQuery()

e preparedStatement.close()

e Close Connection

* Without a pool connection creation is a heavyweight operation. PostgreSQL uses
processes so each connection is a process

* Does not take advantage of caching
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Better solution

* Open connection

* Prepare statement ‘select * from foo where id=7"

» By default after 5 executions will create a named statement PARSE S_1 as
‘select * from foo where id=?’

e Multiple preparedStatment.executeQuery() BIND/EXEC instead of PARSE/BIND/
EXEC

* Never close the statement if possible
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Query cache best practices

e Client side query cache only works in 9.4.1203 and up

* Do not use generated queries, as they generate new server side prepared
statement

* Things like executeUpdate(‘insert into foo (i,l.f,d) values (1,2,3,4)") will never
use a named statement

* Do not change the type of a parameter as this leads to DEALLOCATE/PREPARE

e Pstmt.setint(1,1)

e Pstmt.setNull(1,Types.VARCHAR) this will cause the prepared statement to be
deallocated
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Less obvious issues

e Server Prepare activated after 5 executions
* There is a configuration parameter called prepareThreshold (default 5)
 PGStatement.isUseServerPrepare() can be used to check

* After 5 executions of the same prepared statement we change from unnamed
statements to named

 Named statements will use binary mode where possible;
e binary mode is faster when we have to parse things like timestamps
 Named statements are only parsed once on the server then bind/execute

operations on the server
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setFetchSize

If we don’t use a fetch size we will read the entire response into memory then
process

Optimizing the data sent at one time reduces memory usage and GC

Only works with in a transaction

Make sure fetch size is above 100

If you have a lot of data this is really the only way to read it in without an Out Of
Memory Exception
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Performance enhancements review

e Cache parsed statements across PrepareStatement calls now don’t have to

parse the statement in java each time
* Execute Batch changed to not execute statement by statement bug in code

disabled batching
* Rewrite Batched inserts rewrites inserts from multiple insert into foo (a,b,c)

values (1,2,3) to insert into foo (a,b,c) values (1,2,3), (4,5,6) this provides 2x-3x

speed up
* Avoid Calendar cloning provides 4x speed increase for setTimestamp pr 376
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Conclusions

* Using insert rewrite gives us a 2-3x performance increase
for batch inserts

 Makes sense as it is one trip
e Use setFetchSize(100) or greater and use transactions

* Don't close prepared statements.
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New Release Numbering 42.0.0

* WWanted to divorce ourselves from the server release
schedule

e \Wanted to reduce confusion as to which version to use.
Previously the numbers 9.x were in the version number.

* Introduce semantic versioning

* 42 more or less at random, but also the answer to the

guestion.
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Notable changes

e Support dropped for versions before 8.2
* Replace hand written logger with java.util.logging
* Replication protocol APl was added.
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Logical Replication Overview

* Reads the WAL logs and outputs them in any format you
want

* Read changes

e Send confirmation of changes read

e GOTO read more changes
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Logical Replication High level Steps

e Create a replication connection

e Create a logical replication slot
 Read changes

e Send confirmation of changes read
e GOTO read more changes
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Create a Replication Connection

String url = "jdbc:postgresql://localhost:5432/postgres"”;
Properties props = new Properties();
PGProperty.USER.set(props, "postgres");
PGProperty.PASSWORD.set(props, "postgres");
PGProperty.ASSUME_MIN_SERVER_VERSION.set(props, "9.4");
PGProperty.REPLICATION.set(props, "database");
PGProperty.PREFER_QUERY_MODE.set(props, "simple");

Connection con = DriverManager.getConnection(url, props);
PGConnection replConnection = con.unwrap(PGConnection.class);

* PGProperty.REPLICATION set to “database” instructs the
walsender to connect to the database in the url and allow
the connection to be used for logical replication.

* PREFER QUERY_MODE needs to be set to simple as
replication does not allow the use of the extended query
mode
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Create a Logical Replication Slot

String outputPlugin = f‘test_decode’;

try (PreparedStatement preparedStatement =
connection.prepareStatement("SELECT * FROM

pg_create_logical_replication_slot(?, ?)"))

{
preparedStatement.setString(1, slotName);
preparedStatement.setString(2, outputPlugin);
preparedStatement.executeQuery())

}

 Slots require a name and an output plugin

* Any unique name will work

e The output plugin is a previously compiled C library which
formats the logical WAL
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Create a replication stream

PGReplicationStream stream =
pgConnection

.getReplicationAPI()
.replicationStream()
.logical()
.withSlotName (SLOT_NAME)
.withStartPosition(1sn)
.withSlotOption("include-xids", true)

.start();
* Open a PGReplicationStream with the same slot name

e Start position can be an existing LSN or InvalidLSN
» SlotOptions are sent to the logical decoder and are decoder

specific
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Read Changes from database

while (true) {
//non blocking receive message
ByteBuffer msg = stream.readPending();
if (msg == null) {
TimeUnit.MILLISECONDS.sleep(10L);
continue;
}
int offset = msg.arrayOffset();
byte[] source = msg.array();
int length = source.length - offset;
System.out.println(new String(source, offset, length));
//feedback
stream.setAppliedLSN(stream.getLastReceivelLSN());
stream.setFlushedLSN(stream.getLastReceivelLSN());

}
e Read from the stream, data will be in a ByteBuffer

 After reading the data send confirmation messages
e github.com:davecramer/LogicalDecode.qgit
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https://github.com/pgjdbc/pgjdbc

e Credit where credit is due:

e Much of the optimization work on the driver was done by Vladimir Sitnikov

* Much (if not all ) of the work to convert the build to Maven was done by Stephen
Nelson

* Rewriting batch statements thanks to Jeremy Whiting

* Replication support was provided by Vladimir Gordiychuk

e Questions ?
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