JDBC Performance
from the Inside

July 2017

Introduction

e Dave Cramer

* Work for OpenSCG supporting PostgreSQL

* Maintainer for the JDBC driver since 1999

e There are many options for connecting

* Many of them | didn’t totally understand

* This talk hopes to unveil some of the more interesting ones
* And explain how they work.

OpenSCG O BIGSQL

Overview

 History of the driver
Connecting to the driver
Under utilized features
Performance tips

Latest Release major features

OpenSCG

S

BIGSQL

History

* Originally written by Peter Mount in 1997

e Supported JDBC 1.2

1997 JDBC 1.2 Java 1.1

1999 JDBC 2.1 Java 1.2

e 2001 JDBC 3.0 Java1.4

e 2006 JDBC 4.0 Javab

« 2011 JDBC 4.1 Java7

« 2014 JDBC 4.2 Java8

« 2017 JDBC 4.3 Java 9 (Maybe ?)

e Each one of these were incremental additions to the interface
e Requiring additional concrete implementations of the spec to be implemented

OpenSCG O BIGSQL

Connecting to the server

OpenSCG IBIGSQL -~

URL options

* jdbc:postgresql:

* Connects to localhost, port 5432, database specified in user
jdbc:postgresql://host/

e Connects to <host>, port 5432, and database specified in user
jdbc:postgresql://host:port/

* Connects to <host><port> and database specified in user
jdbc:postgresql:database
jdbc:postgresql://host:port/database
jdbc:postgresql://host1:port, host2:port/database

OpenSCG O BIGSQL

Connection Properties

- PG _DBNAME
- PG _DBHOST
- PG_DBPORT

These can be used in the following manner

Properties props = new Properties();
props.setProperty(PGProperty.PG_DBNAME.getName(),"test");
props.setProperty(PGProperty.PG_HOST.getName(),"localhost");
props.setProperty(PGProperty.PG_PORT.getName(),"5432");

props.setProperty("user”,"davec");
props.setProperty("password”, "");
Connection connection = DriverManager.getConnection("jdbc:postgresql:”, props);

SCG O SQL

Logging
* loggerLevel = OFF|IDEBUG|TRACE
* Enables java.util.logging.Logger DEBUG=FINE,
TRACE=FINEST
* Not intended for SQL logging but rather to debug
the driver
* loggerFile=<filename> the file to output the log to. If
this is not set then the output will be written to the
console.

OpenSCG S BIGSQL

Logging continued

* We will honour DriverManager.setLogStream or
DriverManager.setLogWriter

* Parent logger is org.postgresq|

* Since we are using java.util.Logging, we can use a
properties file to configure logging

* handlers=java.util.logging.FileHandler

 org.postgresql.level=FINEST

e java —Djava.util.logging.config.file=...

OpenSCG S BIGSQL

Logging continued

* logUnclosedConnections=boolean

* Provides an easy way to find connection leaks

e If this is turned on we track connection opening. If
the finalizer is reached and the connection is still
open the stacktrace message is printed out.

OpenSCG S BIGSQL

Autosave

e autosave = never | always | conservative

* PostgreSQL transaction semantics all or nothing. This is not always desirable

* autosave=always will create a savepoint for every statement in a transaction.

* The effect of which means that if you do

* Insert into invoice _header ...

* Insert into invoice lineitem ...

* If the insert into invoice lineitem fails the header will still be valid.

* In conservative mode if the driver determines that reparsing the query will work
then it will be reparsed and retried.

OpenSCG O BIGSQL

11

Binary Transfer

 binaryTransferEnable=comma separated list of oid’s
or names

* binaryTransferDisable

e Currently the driver will use binary mode for most
built-in types.

OpenSCG S BIGSQL

preferQueryMode

* simple
* Fewer round trips to db no bind, no parse
» Required for replication connection
» extended
« Default creates a server prepared statement,
uses parse, bind and execute.
* Protects against sql injection
» Possible to re-use the statement

OpenSCG S BIGSQL

preferQueryMode

» extendedForPrepared
* Does not use extended for statements, only
prepared statements
« Potentially faster execution of statements
« extendedCacheEverything
» Uses extended and caches even simple
statements such as ‘select a from tbl’ which is
normally not cached

OpenSCG S BIGSQL

defaultRowFetchSize=int

» Default is 0 which means fetch all rows
* This is sometimes surprising and can result in
out of memory errors
* |f set *AND* autocommit=false THEN will limit the
number of rows per fetc
 Potentially significant performance boost

OpenSCG O BIGSQL

stringtype=varchar|unspecified

« The default is varchar, which tells the server
that strings are actually strlngs'
* You can use stringtype=‘unspecified’

« Usefull if you have an eX|st|ng application
that uses setString(‘1234’) to set an integer
column.

« Server will attempt to cast the “string” to the
appropriate type.

OpenSCG O BIGSQL

ApplicationName=String

 sets the application name

 Servers version 9.0 and greater

« Useful for logging and seeing which
connections are yours in pg_stat activity, etc.

OpenSCG O BIGSQL

readOnly=boolean

« The default is false

e True sends ser sessioN CHARACTERISTICS AS TRANSACTION READ ONLY
to the server.

* This blocks any writes to persistent tables,
intbelrestingly you can still write to a temporary
table.

OpenSCG S BIGSQL

disableColumnSanitizer=boolean

e columnSanitizer folds column names to lower
case.

e Column names like FirstName become
firsthame.

* Resultset.getInt(“firstname”)

 default is to sanitize names

OpenSCG O BIGSQL

assumeMinServerVersion=3tring

« Currently there are only 2 use cases
* 9.0 which will enable
* ApplicationName=ApplicationName
(defaults to PostgreSQL JDBC Driver)
« sets extra float digits to 3
* 9.4 necessary for replication connections

OpenSCG O BIGSQL

currentSchema=3String

* by default the current schema will be “public”

« If you want to refer to a table in a different
schema it would have to be specified by
schema.table

 If you set this connection property to “audit” for
example instead of “select * from audit.log” you
could use select * from log;

OpenSCG O BIGSQL

reWriteBatchedlnserts=true

* Enables the driver to optimize batch inserts by
changing multiple insert statements into one
iInsert statement.

« Multiple statements such as “insert into tab1
values (1,2,3);”

* Rewritten as “insert into tab1 values (1,2,3),
(4,5,06)

OpenSCG O BIGSQL

Connection Failover

« Specify multiple hosts in the connection string

« “jdbc:postgresql://host1:port1,host2:port2/
database”

« By default this will attempt to make connections
to each host until it succeeds

OpenSCG S BIGSQL

Connection Failover tuning

« targetServerType=master, slave, preferSlave
« Observes it server allows writes to pick
« preferSlave will try slaves first then fall back

to master

* loadBalanceHosts=boolean will randomly pick
from suitable candidates

* hostRecheckSeconds=number of seconds
between checking status (read or write) of hosts
default is 10 seconds

OpenSCG O BIGSQL

replication=database, true

* Tells the backend to go into walsender mode

« Simple query mode, subset of commands

« Setting to database enables logical replication
for that database

* Must be accompanied by
assumMinServerVersion="9.4" and
preferQueryMode="simple”

OpenSCG oBIGSQL

Performance tricks

* setFetchSize
* rewriteBatchlnserts

OpenSCG

oBIGSQL

26

Set FetchSize performance

* Fetch a large amount of data with different fetch sizes
public static final String QUERY = "SELECT t FROM number";

@Benchmark
public void test(Blackhole blackhole, PgStatStatements pgStatStatements) throws SQLException {

pgStatStatements.setTestName(QueryBenchmarks.JIMHTestNameFromClass(_6_String NoAutocommit.class));

QueryUtil.executeProcessQueryNoAutocommit (QUERY, resultSet -> {
while (resultSet.next()) {
blackhole.consume(resultSet.getString(1));
}
})s
}

// Used to fetch rows in batches from the db. Will only work if the connection does not use
AutoCommit
PGProperty.DEFAULT_ROW_FETCH_SIZE.set(properties, FETCH_SIZE);

SCG oBIGSQL

Time it takes to fetch 1M rows

35
30
25

20
15 =time(s)

10
5 ¥

0

10 100 1000 10000

OpenSCG OBIGSQL

What are the options for inserting lots of data

* For each row insertExecute this is the slowest

 For each row insertBatch this would be ideal

 Insert into foo (i,j) values (1,’one’), (2,'two’) (n,’n’) hand rolled code
e Copy into foo from stdin...

OpenSCG O BIGSQL

29

JDBC micro benchmark suite

Java 1.8 60

Core i7 2.8GHz

PostgreSQL 9.6
https://github.com/pgjdbc/pgidbc/tree/master/ubenchmark
create table batch_perf _test(a int4, b varchar(100), c int4)

Table "public.batch_perf_test”

Cquan|r Type
a integer

character varying(100)
(0] integer

OpenSCG

oBIGSQL

30

INSERT Batch 1 row at a time

For each row Insert into perf (a,b,c) values (?,?,7?)

After N rows executeBatch

Normal mode this executes N inserts, not any faster than
Looping over N inserts without batch mode

OpenSCG

oBIGSQL

31

NSERT Batch N rows at a time

For each row Insert into perf (a,b,c) values (?,?,?), (?,7,?), (?,7,7), (?,?,?)
After N/ rows_at_a time rows executeBatch
Given 1000 (N) rows if we insert them 100(rows_at_a_time) , end up inserting 10

rows 100 wide
More data inserted per statement, less statements

OpenSCG O BIGSQL

32

NSERT Batch with insertRewrite

For each row Insert into perf (a,b,c) values (?,?,7?)
After N rows executeBatch
Same as last slide except we set the connection parameter insertRewrite=true

As of version 1209 this is has been enabled
Same as insert into foo (i,j) values (1,’'one’), (2,'two’) (n,’n’) except the driver
does it for you.

OpenSCG oBIGSQL

33

Copy

* Loop over the rows creating the input string in memory
e Build a string in memory which looks like 0\tsO\tO\n1\ts1\t1\n....

* The string will end up being nrows / rows_at_a_time long

* Use the copy API to copy this into the table

OpenSCG OBIGSQL

34

Hand rolled insert struct N structs at a time

e Insert into batch_perf test select * from unnest (?::batch_perf test[])
For N rows setString to {(1,s1,1)",(2,s2,2)",’(3,s3,3)"}

Add Batch

executeBatch

The query that gets executes look like:

Insert into batch_perf test select *
from unnest ({"(1,s1,1)",7(2,s2,2)",’(3,s3,3)"} ::batch_perf _test[])

OpenSCG O BIGSQL

35

Results

Batch size of 128

¥ |nsertBatch

E 40 H Copy

20 Hlnsert
0 —

16 128 1024
Number of rows

OpenSCG IBIGSQL-

36

Conclusion

 Compared to batch inserts, plain inserts are very slow for
large amounts of data

OpenSCG O BIGSQL

37

Results

1024 rows different batch sizes

200
w 150
E
Q 1 OO H|nsert Batch
g H|nsert Rewrite
- 50 “ Copy

O 1 -_ H|nsert Struct
1 4 8 16 128
Batch size

OpenSCG SIBIGSAQL - -

38

How not to use JDBC (unfortunately typical)

* Open connection

* Prepare statement ‘select * from foo where id=?’

* preparedStatment.executeQuery()

e preparedStatement.close()

e Close Connection

* Without a pool connection creation is a heavyweight operation. PostgreSQL uses
processes so each connection is a process

* Does not take advantage of caching

OpenSCG oBIGSQL

39

Better solution

* Open connection

* Prepare statement ‘select * from foo where id=7"

» By default after 5 executions will create a named statement PARSE S_1 as
‘select * from foo where id=?’

e Multiple preparedStatment.executeQuery() BIND/EXEC instead of PARSE/BIND/
EXEC

* Never close the statement if possible

OpenSCG O BIGSQL

40

Query cache best practices

e Client side query cache only works in 9.4.1203 and up

* Do not use generated queries, as they generate new server side prepared
statement

* Things like executeUpdate(‘insert into foo (i,l.f,d) values (1,2,3,4)") will never
use a named statement

* Do not change the type of a parameter as this leads to DEALLOCATE/PREPARE

e Pstmt.setint(1,1)

e Pstmt.setNull(1,Types.VARCHAR) this will cause the prepared statement to be
deallocated

OpenSCG oBIGSQL

41

Less obvious issues

e Server Prepare activated after 5 executions
* There is a configuration parameter called prepareThreshold (default 5)
 PGStatement.isUseServerPrepare() can be used to check

* After 5 executions of the same prepared statement we change from unnamed
statements to named

 Named statements will use binary mode where possible;
e binary mode is faster when we have to parse things like timestamps
 Named statements are only parsed once on the server then bind/execute

operations on the server

OpenSCG S BIGSQL

42

setFetchSize

If we don’t use a fetch size we will read the entire response into memory then
process

Optimizing the data sent at one time reduces memory usage and GC

Only works with in a transaction

Make sure fetch size is above 100

If you have a lot of data this is really the only way to read it in without an Out Of
Memory Exception

OpenSCG O BIGSQL

43

Performance enhancements review

e Cache parsed statements across PrepareStatement calls now don’t have to

parse the statement in java each time
* Execute Batch changed to not execute statement by statement bug in code

disabled batching
* Rewrite Batched inserts rewrites inserts from multiple insert into foo (a,b,c)

values (1,2,3) to insert into foo (a,b,c) values (1,2,3), (4,5,6) this provides 2x-3x

speed up
* Avoid Calendar cloning provides 4x speed increase for setTimestamp pr 376

OpenSCG oBIGSQL

44

Conclusions

* Using insert rewrite gives us a 2-3x performance increase
for batch inserts

 Makes sense as it is one trip
e Use setFetchSize(100) or greater and use transactions

* Don't close prepared statements.

OpenSCG O BIGSQL

45

New Release Numbering 42.0.0

* WWanted to divorce ourselves from the server release
schedule

e \Wanted to reduce confusion as to which version to use.
Previously the numbers 9.x were in the version number.

* Introduce semantic versioning

* 42 more or less at random, but also the answer to the

guestion.

OpenSCG oBIGSQL

46

Notable changes

e Support dropped for versions before 8.2
* Replace hand written logger with java.util.logging
* Replication protocol APl was added.

OpenSCG S BIGSQL

47

Logical Replication Overview

* Reads the WAL logs and outputs them in any format you
want

* Read changes

e Send confirmation of changes read

e GOTO read more changes

OpenSCG O BIGSQL

48

Logical Replication High level Steps

e Create a replication connection

e Create a logical replication slot
 Read changes

e Send confirmation of changes read
e GOTO read more changes

OpenSCG O BIGSQL

49

Create a Replication Connection

String url = "jdbc:postgresql://localhost:5432/postgres"”;
Properties props = new Properties();
PGProperty.USER.set(props, "postgres");
PGProperty.PASSWORD.set(props, "postgres");
PGProperty.ASSUME_MIN_SERVER_VERSION.set(props, "9.4");
PGProperty.REPLICATION.set(props, "database");
PGProperty.PREFER_QUERY_MODE.set(props, "simple");

Connection con = DriverManager.getConnection(url, props);
PGConnection replConnection = con.unwrap(PGConnection.class);

* PGProperty.REPLICATION set to “database” instructs the
walsender to connect to the database in the url and allow
the connection to be used for logical replication.

* PREFER QUERY_MODE needs to be set to simple as
replication does not allow the use of the extended query
mode

OpenSCG S BIGSQL

50

Create a Logical Replication Slot

String outputPlugin = f‘test_decode’;

try (PreparedStatement preparedStatement =
connection.prepareStatement("SELECT * FROM

pg_create_logical_replication_slot(?, ?)"))

{
preparedStatement.setString(1, slotName);
preparedStatement.setString(2, outputPlugin);
preparedStatement.executeQuery())

}

 Slots require a name and an output plugin

* Any unique name will work

e The output plugin is a previously compiled C library which
formats the logical WAL

OpenSCG S BIGSQL

51

Create a replication stream

PGReplicationStream stream =
pgConnection

.getReplicationAPI()
.replicationStream()
.logical()
.withSlotName (SLOT_NAME)
.withStartPosition(1sn)
.withSlotOption("include-xids", true)

.start();
* Open a PGReplicationStream with the same slot name

e Start position can be an existing LSN or InvalidLSN
» SlotOptions are sent to the logical decoder and are decoder

specific

OpenSCG S BIGSQL

52

Read Changes from database

while (true) {
//non blocking receive message
ByteBuffer msg = stream.readPending();
if (msg == null) {
TimeUnit.MILLISECONDS.sleep(10L);
continue;
}
int offset = msg.arrayOffset();
byte[] source = msg.array();
int length = source.length - offset;
System.out.println(new String(source, offset, length));
//feedback
stream.setAppliedLSN(stream.getLastReceivelLSN());
stream.setFlushedLSN(stream.getLastReceivelLSN());

}
e Read from the stream, data will be in a ByteBuffer

 After reading the data send confirmation messages
e github.com:davecramer/LogicalDecode.qgit

nSCG oBIGSQL

https://github.com/pgjdbc/pgjdbc

e Credit where credit is due:

e Much of the optimization work on the driver was done by Vladimir Sitnikov

* Much (if not all) of the work to convert the build to Maven was done by Stephen
Nelson

* Rewriting batch statements thanks to Jeremy Whiting

* Replication support was provided by Vladimir Gordiychuk

e Questions ?

OpenSCG O BIGSQL

54

