
1

JDBC Performance
from the Inside

July 2017

2

�  Dave Cramer
�  Work for OpenSCG supporting PostgreSQL
�  Maintainer for the JDBC driver since 1999
�  There are many options for connecting
�  Many of them I didn’t totally understand
�  This talk hopes to unveil some of the more interesting ones
�  And explain how they work.

Introduction

3

�  History of the driver
�  Connecting to the driver
�  Under utilized features
�  Performance tips
�  Latest Release major features

Overview

4

�  Originally written by Peter Mount in 1997
�  Supported JDBC 1.2
�  1997 JDBC 1.2 Java 1.1
�  1999 JDBC 2.1 Java 1.2
�  2001 JDBC 3.0 Java 1.4
�  2006 JDBC 4.0 Java 6
�  2011 JDBC 4.1 Java 7
�  2014 JDBC 4.2 Java 8
�  2017 JDBC 4.3 Java 9 (Maybe ?)
�  Each one of these were incremental additions to the interface
�  Requiring additional concrete implementations of the spec to be implemented

History

5

Connecting to the server

6

�  jdbc:postgresql:
�  Connects to localhost, port 5432, database specified in user

�  jdbc:postgresql://host/
�  Connects to <host>, port 5432, and database specified in user

�  jdbc:postgresql://host:port/
�  Connects to <host><port> and database specified in user

�  jdbc:postgresql:database
�  jdbc:postgresql://host:port/database
�  jdbc:postgresql://host1:port, host2:port/database

URL options

7

•  PG_DBNAME
•  PG_DBHOST
•  PG_DBPORT

These can be used in the following manner

Properties props = new Properties();
props.setProperty(PGProperty.PG_DBNAME.getName(),"test");
props.setProperty(PGProperty.PG_HOST.getName(),"localhost");
props.setProperty(PGProperty.PG_PORT.getName(),"5432");

props.setProperty("user","davec");
props.setProperty("password", "");
Connection connection = DriverManager.getConnection("jdbc:postgresql:”, props);

Connection Properties

8

� loggerLevel = OFF|DEBUG|TRACE
� Enables java.util.logging.Logger DEBUG=FINE,

TRACE=FINEST
� Not intended for SQL logging but rather to debug

the driver
� loggerFile=<filename> the file to output the log to. If

this is not set then the output will be written to the
console.

Logging

9

� We will honour DriverManager.setLogStream or
DriverManager.setLogWriter

� Parent logger is org.postgresql
� Since we are using java.util.Logging, we can use a

properties file to configure logging
� handlers=java.util.logging.FileHandler
� org.postgresql.level=FINEST
� java –Djava.util.logging.config.file=…

Logging continued

10

� logUnclosedConnections=boolean
� Provides an easy way to find connection leaks
� If this is turned on we track connection opening. If

the finalizer is reached and the connection is still
open the stacktrace message is printed out.

Logging continued

11

�  autosave = never | always | conservative
�  PostgreSQL transaction semantics all or nothing. This is not always desirable
�  autosave=always will create a savepoint for every statement in a transaction.
�  The effect of which means that if you do
�  Insert into invoice_header …
�  Insert into invoice_lineitem …
�  If the insert into invoice lineitem fails the header will still be valid.
�  In conservative mode if the driver determines that reparsing the query will work

then it will be reparsed and retried.

Autosave

12

� binaryTransferEnable=comma separated list of oid’s
or names

� binaryTransferDisable
� Currently the driver will use binary mode for most

built-in types.

Binary Transfer

13

•  simple
•  Fewer round trips to db no bind, no parse
•  Required for replication connection

•  extended
•  Default creates a server prepared statement,

uses parse, bind and execute.
•  Protects against sql injection
•  Possible to re-use the statement

preferQueryMode

14

•  extendedForPrepared
•  Does not use extended for statements, only

prepared statements
•  Potentially faster execution of statements

•  extendedCacheEverything
•  Uses extended and caches even simple

statements such as ‘select a from tbl’ which is
normally not cached

preferQueryMode

15

•  Default is 0 which means fetch all rows
•  This is sometimes surprising and can result in

out of memory errors
•  If set *AND* autocommit=false THEN will limit the

number of rows per fetc
•  Potentially significant performance boost

defaultRowFetchSize=int

16

•  The default is varchar, which tells the server
that strings are actually strings!

•  You can use stringtype=‘unspecified’
•  Usefull if you have an existing application

that uses setString(‘1234’) to set an integer
column.

•  Server will attempt to cast the “string” to the
appropriate type.

stringtype=varchar|unspecified

17

•  sets the application name
•  Servers version 9.0 and greater
•  Useful for logging and seeing which

connections are yours in pg_stat_activity, etc.

ApplicationName=String

18

•  The default is false
•  True sends SET SESSION CHARACTERISTICS AS TRANSACTION READ ONLY

to the server.
•  This blocks any writes to persistent tables,

interestingly you can still write to a temporary
table.

readOnly=boolean

19

•  columnSanitizer folds column names to lower
case.

•  Column names like FirstName become
firstname.

•  Resultset.getInt(“firstname”)
•  default is to sanitize names

disableColumnSanitizer=boolean

20

•  Currently there are only 2 use cases
•  9.0 which will enable

•  ApplicationName=ApplicationName
(defaults to PostgreSQL JDBC Driver)

•  sets extra float digits to 3
•  9.4 necessary for replication connections

assumeMinServerVersion=String

21

•  by default the current schema will be “public”
•  If you want to refer to a table in a different

schema it would have to be specified by
schema.table

•  If you set this connection property to “audit” for
example instead of “select * from audit.log” you
could use select * from log;

currentSchema=String

22

•  Enables the driver to optimize batch inserts by
changing multiple insert statements into one
insert statement.

•  Multiple statements such as “insert into tab1
values (1,2,3);”

•  Rewritten as “insert into tab1 values (1,2,3),
(4,5,6)

reWriteBatchedInserts=true

23

•  Specify multiple hosts in the connection string
•  “jdbc:postgresql://host1:port1,host2:port2/

database”
•  By default this will attempt to make connections

to each host until it succeeds

Connection Failover

24

•  targetServerType=master, slave, preferSlave
•  Observes if server allows writes to pick
•  preferSlave will try slaves first then fall back

to master
•  loadBalanceHosts=boolean will randomly pick

from suitable candidates
•  hostRecheckSeconds=number of seconds

between checking status (read or write) of hosts
default is 10 seconds

Connection Failover tuning

25

•  Tells the backend to go into walsender mode
•  Simple query mode, subset of commands
•  Setting to database enables logical replication

for that database
•  Must be accompanied by

assumMinServerVersion=“9.4” and
preferQueryMode=“simple”

replication=database, true

26

�  setFetchSize
�  rewriteBatchInserts

 Performance tricks

27

�  Fetch a large amount of data with different fetch sizes
Set FetchSize performance

public	static	final	String	QUERY	=	"SELECT	t	FROM	number";	
	
@Benchmark	
public	void	test(Blackhole	blackhole,	PgStatStatements	pgStatStatements)	throws	SQLException	{	
				
pgStatStatements.setTestName(QueryBenchmarks.JMHTestNameFromClass(_6_String_NoAutocommit.class));	
	
				QueryUtil.executeProcessQueryNoAutocommit(QUERY,	resultSet	->	{	
												while	(resultSet.next())	{	
																blackhole.consume(resultSet.getString(1));	
												}	
				});	
}	
	
//	Used	to	fetch	rows	in	batches	from	the	db.	Will	only	work	if	the	connection	does	not	use	
AutoCommit	
PGProperty.DEFAULT_ROW_FETCH_SIZE.set(properties,	FETCH_SIZE);	
	

28

Time it takes to fetch 1M rows

0
5

10
15
20
25
30
35

10 100 1000 10000

time(s)

29

�  For each row insertExecute this is the slowest
�  For each row insertBatch this would be ideal
�  Insert into foo (i,j) values (1,’one’), (2,’two’) …. (n,’n’) hand rolled code
�  Copy into foo from stdin…

What are the options for inserting lots of data

30

�  Java 1.8_60
�  Core i7 2.8GHz
�  PostgreSQL 9.6
�  https://github.com/pgjdbc/pgjdbc/tree/master/ubenchmark
�  create table batch_perf_test(a int4, b varchar(100), c int4)

 Table "public.batch_perf_test”

 Column | Type
 --------+-----------------------------------
 a | integer
 b | character varying(100)
 c | integer

JDBC micro benchmark suite

31

�  For each row Insert into perf (a,b,c) values (?,?,?)
�  After N rows executeBatch
�  Normal mode this executes N inserts, not any faster than
�  Looping over N inserts without batch mode

INSERT Batch 1 row at a time

32

�  For each row Insert into perf (a,b,c) values (?,?,?), (?,?,?), (?,?,?), (?,?,?)
�  After N/ rows_at_a_time rows executeBatch
�  Given 1000 (N) rows if we insert them 100(rows_at_a_time) , end up inserting 10

rows 100 wide
�  More data inserted per statement, less statements

INSERT Batch N rows_at_a_time

33

�  For each row Insert into perf (a,b,c) values (?,?,?)
�  After N rows executeBatch
�  Same as last slide except we set the connection parameter insertRewrite=true
�  As of version 1209 this is has been enabled
�  Same as insert into foo (i,j) values (1,’one’), (2,’two’) …. (n,’n’) except the driver

does it for you.

INSERT Batch with insertRewrite

34

�  Loop over the rows creating the input string in memory
�  Build a string in memory which looks like 0\ts0\t0\n1\ts1\t1\n….
�  The string will end up being nrows / rows_at_a_time long
�  Use the copy API to copy this into the table

Copy

35

Hand rolled insert struct N structs at a time
�  Insert into batch_perf_test select * from unnest (?::batch_perf_test[])
�  For N rows setString to ‘{“(1,s1,1)”,”(2,s2,2)”,”(3,s3,3)”}’
�  Add Batch
�  executeBatch
�  The query that gets executes look like:

Insert into batch_perf_test select *
 from unnest (‘{“(1,s1,1)”,”(2,s2,2)”,”(3,s3,3)”}’::batch_perf_test[])

36

Results

0
20
40
60
80

100
120

16 128 1024

Ti
m

e
(m

s)

Number of rows

Batch size of 128

InsertBatch

Copy

Insert

37

Conclusion
 � Compared to batch inserts, plain inserts are very slow for

large amounts of data

38

Results

0

50

100

150

200

1 4 8 16 128

Ti
m

e
(m

s)

Batch size

1024 rows different batch sizes

Insert Batch

Insert Rewrite

Copy

Insert Struct

39

�  Open connection
�  Prepare statement ‘select * from foo where id=?’
�  preparedStatment.executeQuery()
�  preparedStatement.close()
�  Close Connection
�  Without a pool connection creation is a heavyweight operation. PostgreSQL uses

processes so each connection is a process
�  Does not take advantage of caching

How not to use JDBC (unfortunately typical)

40

�  Open connection
�  Prepare statement ‘select * from foo where id=?’
�  By default after 5 executions will create a named statement PARSE S_1 as

‘select * from foo where id=?’
�  Multiple preparedStatment.executeQuery() BIND/EXEC instead of PARSE/BIND/

EXEC
�  Never close the statement if possible

Better solution

41

�  Client side query cache only works in 9.4.1203 and up
�  Do not use generated queries, as they generate new server side prepared

statement
�  Things like executeUpdate('insert into foo (i,l,f,d) values (1,2,3,4)') will never

use a named statement
�  Do not change the type of a parameter as this leads to DEALLOCATE/PREPARE
�  Pstmt.setInt(1,1)
�  Pstmt.setNull(1,Types.VARCHAR) this will cause the prepared statement to be

deallocated

Query cache best practices

42

�  Server Prepare activated after 5 executions
�  There is a configuration parameter called prepareThreshold (default 5)
�  PGStatement.isUseServerPrepare() can be used to check
�  After 5 executions of the same prepared statement we change from unnamed

statements to named
�  Named statements will use binary mode where possible;
�  binary mode is faster when we have to parse things like timestamps
�  Named statements are only parsed once on the server then bind/execute

operations on the server

Less obvious issues

43

�  If we don’t use a fetch size we will read the entire response into memory then
process

�  Optimizing the data sent at one time reduces memory usage and GC
�  Only works with in a transaction
�  Make sure fetch size is above 100
�  If you have a lot of data this is really the only way to read it in without an Out Of

Memory Exception

setFetchSize

44

�  Cache parsed statements across PrepareStatement calls now don’t have to
parse the statement in java each time

�  Execute Batch changed to not execute statement by statement bug in code
disabled batching

�  Rewrite Batched inserts rewrites inserts from multiple insert into foo (a,b,c)
values (1,2,3) to insert into foo (a,b,c) values (1,2,3), (4,5,6) this provides 2x-3x
speed up

�  Avoid Calendar cloning provides 4x speed increase for setTimestamp pr 376

Performance enhancements review

45

Conclusions
 � Using insert rewrite gives us a 2-3x performance increase

for batch inserts
� Makes sense as it is one trip
� Use setFetchSize(100) or greater and use transactions
� Don’t close prepared statements.

46

New Release Numbering 42.0.0
� Wanted to divorce ourselves from the server release

schedule
� Wanted to reduce confusion as to which version to use.

Previously the numbers 9.x were in the version number.
�  Introduce semantic versioning
� 42 more or less at random, but also the answer to the

question.

47

Notable changes
� Support dropped for versions before 8.2
� Replace hand written logger with java.util.logging
� Replication protocol API was added.

48

Logical Replication Overview

� Reads the WAL logs and outputs them in any format you

want
� Read changes
� Send confirmation of changes read
� GOTO read more changes

49

Logical Replication High level Steps
� Create a replication connection
� Create a logical replication slot
� Read changes
� Send confirmation of changes read
� GOTO read more changes

50

Create a Replication Connection

� PGProperty.REPLICATION set to “database” instructs the
walsender to connect to the database in the url and allow
the connection to be used for logical replication.

� PREFER_QUERY_MODE needs to be set to simple as
replication does not allow the use of the extended query
mode

String	url	=	"jdbc:postgresql://localhost:5432/postgres";	
	Properties	props	=	new	Properties();	
	PGProperty.USER.set(props,	"postgres");	
	PGProperty.PASSWORD.set(props,	"postgres");	
	PGProperty.ASSUME_MIN_SERVER_VERSION.set(props,	"9.4");	
	PGProperty.REPLICATION.set(props,	"database");	
	PGProperty.PREFER_QUERY_MODE.set(props,	"simple");	
	Connection	con	=	DriverManager.getConnection(url,	props);	
	PGConnection	replConnection	=	con.unwrap(PGConnection.class);	

51

Create a Logical Replication Slot

� Slots require a name and an output plugin
� Any unique name will work
� The output plugin is a previously compiled C library which

formats the logical WAL

String	outputPlugin	=		‘test_decode’;	
try	(PreparedStatement	preparedStatement	=	
													connection.prepareStatement("SELECT	*	FROM	
pg_create_logical_replication_slot(?,	?)"))	
{	
				preparedStatement.setString(1,	slotName);	
				preparedStatement.setString(2,	outputPlugin);	
				preparedStatement.executeQuery())	
			
}	

52

Create a replication stream

� Open a PGReplicationStream with the same slot name
� Start position can be an existing LSN or InvalidLSN
� SlotOptions are sent to the logical decoder and are decoder

specific

PGReplicationStream	stream	=	
								pgConnection	
																.getReplicationAPI()	
																.replicationStream()	
																.logical()	
																.withSlotName(SLOT_NAME)	
																.withStartPosition(lsn)	
																.withSlotOption("include-xids",	true)	
																.start();

53

Read Changes from database

� Read from the stream, data will be in a ByteBuffer
� After reading the data send confirmation messages
� github.com:davecramer/LogicalDecode.git

	while	(true)	{	
						//non	blocking	receive	message	
						ByteBuffer	msg	=	stream.readPending();	
						if	(msg	==	null)	{	
								TimeUnit.MILLISECONDS.sleep(10L);	
								continue;	
						}	
						int	offset	=	msg.arrayOffset();	
						byte[]	source	=	msg.array();	
						int	length	=	source.length	-	offset;	
						System.out.println(new	String(source,	offset,	length));	
						//feedback	
						stream.setAppliedLSN(stream.getLastReceiveLSN());	
						stream.setFlushedLSN(stream.getLastReceiveLSN());	
				}	

54

�  Credit where credit is due:
�  Much of the optimization work on the driver was done by Vladimir Sitnikov
�  Much (if not all) of the work to convert the build to Maven was done by Stephen

Nelson
�  Rewriting batch statements thanks to Jeremy Whiting
�  Replication support was provided by Vladimir Gordiychuk
�  Questions ?

https://github.com/pgjdbc/pgjdbc

