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$ whoami

I’m a lecturer at UC Leuven-Limburg in 
Belgium teaching database, statistics and 

data mining courses for professional 
bachelors in applied IT



Data mining



$ man “data mining”

What is data mining?
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$ man “data mining”
Many definitions
● Phrase to put on a CV to get hired
● Non‐trivial extraction of implicit, previously unknown and useful 

information from data
● Buzzword used to get money from funding agencies and venture 

capital firms
● (Semi-)automated exploration and analysis of large dataset to 

discover meaningful patterns



 $ data mining -h
● Understand the data
● Extract knowlegde from the data
● Make predictions about the future



$ diff 'big data' 'data mining'

What is the difference?



$ diff 'big data' 'data mining'
● Also a phrase to put on CV to get hired..
● By some given the same content

– Big = usefull, novel, .. information

● Size
● Resource



A view on data mining
● Exploration
● Learning

– Supervised
● Regression
● Classification

– Unsupervised



Supervised: build models
● Training
● Validation
● (Test)



Build models: sampling
● Random
● Stratified if possible



3 common choices
● R
● Python
● Scala



Python: Orange
Build upon
● numpy
● scipy
● scikit-learn



General Storage Guidelines



Different systems
● Operational vs Analytical
● Normalized vs Denormalized



Stars, snowflakes and variants
● Facts and dimensions ..
● DWH



Analytical
● Timestamp

– Valid
● From
● Until

– Creation

– ID

– ..



Denormalized
● Performance
● (Olap)



Constraints
● Not a operational datastore
● If (checks for loading scripts ok),           

then (drop unused constraints)
– Integrity of the original data



PostgreSQL as a datastore



PostgreSQL as a datastore
● Setup
● Basic tests
● Basic tuning
● Loading the data
● Space
● Sampling
● Cstore



Setup
● Read performance (olap vs oltp)
● Commodity hardware:

– 4 cpu cores

– 8 GB RAM

– KVM

– ext4



Basic tests
● pg_bench
● pg_test_fsync
● Vm

– pg_test_timing 





Basic tuning
● $ free



(Read) Tuning
● shared_buffers = '2GB' 
● shared_preload_libraries = 

'pg_stat_statements,cstore_fdw'
● work_mem = '128MB'
● max_parallel_workers_per_gather = '2'
● effective_cache_size = '4GB' (or 5GB)



Loading the data
● COPY
● https://www.postgresql.org/docs/current/static/populate.html

● maintenance_work_mem in the session/script
– SET maintenance_work_mem TO '1GB';

– RESET maintenance_work_mem;

● Analyze

● Avoid single row inserts (single transaction)



“Streaming data”
● Wifi > Radius > Attendance
● Quickly grows over several weeks..

● VACUUM vs VACUUM FULL

● Manage

https://www.postgresql.org/docs/current/static/populate.html




Space: after COPY
● CREATE EXTENSION pg_freespacemap;



Space: another angle
● CREATE EXTENSION pgstattuple;



Space: vacuum side effect
● Running vacuum will not change the 

physical table but add a tiny vm table
– + 0,0035%



Sampling
● TABLESAMPLE option (since 9.5)

– SYSTEM or BERNOULLI

● Let's compare them for performance
– First SYSTEM

– Then BERNOULLI







Sample: Timings
● Bernoulli seems faster

– 5216.084 ms < 31722.369 ms 

● Why?



Explain: cost and time

Method Cost Time

1. SYSTEM 413741.26 32351.848 ms

2. BERNOULLI 241709.26 5803.063 ms

3. SYSTEM 413741.26 1710.712 ms



Caching
● CREATE extension pg_buffercache;
● After earn statement the cache grew   

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README#L208

● From empty to 3*32 after 3 sample scans with 
REPEATABLE seed
– 32 8k buffers / sample scan (=sequential scan)

● The cost of EXPLAIN is misleading in this case



reset OS Cache

● SYSTEM method is faster

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README#L208


Optimizing TABLESAMPLE?
● Index: no benefit
● Parallel querying: no benefit (9.6)



Other sampling methods
● 50% / 30% / 20% sample (TVT)

– based on random() sort order

– Repeatable: SELECT setseed(0.17);
● Between -1 and 1

– 13932632 rows in total

● ORDER BY  OR  add Column
● tsm_system_rows and tsm_system_time



random() SORT order
SELECT * 

FROM phones_gyroscope 

ORDER BY random() 

FETCH FIRST 6966316 ROWS ONLY;

-- work_mem



ADD a random() column
● 3 options

– ADD COLUMN aselect double precision;
● UPDATE phones_gyroscope_dm

SET     aselect = random();

– ADD COLUMN aselect double precision DEFAULT random();

– CREATE UNLOGGED TABLE phones_gyroscope_dm AS

        SELECT  *, random() AS aselect

        FROM    phones_gyroscope;



random(): performance and size
● ADD COLUMN +UPDATE is slower than 

CREATE UNLOGGED TABLE
● ADD COLUMN + UPDATE is in need of 

VACUUM FULL:

ADD COLUMN ADD COLUMN + 
UPDATE

CREATE 

1451 MB 2796 MB 1451 MB



Which one to choose?
● Don't use ADD COLUMN and UPDATE 



Final touch for sample tables
● CREATE INDEX ON 

phones_gyroscope_dm(aselect);
● CLUSTER VERBOSE 

phones_gyroscope_dm USING 
phones_gyroscope_dm_aselect_idx;
– Remember maintenance_work_mem



Random() =? aselect
WITH ac AS( 

 SELECT aselect, count() as idem_tally 

 FROM  phones_gyroscope_dm 

 GROUP BY aselect 

 HAVING count()>1 

 ORDER BY 2) 

SELECT idem_tally, count(*) 

FROM  ac 

GROUP BY ROLLUP (idem_tally)

ORDER BY 1,2;



Collision %
● SELECT 44952.0/13932632*100 

 AS collision_percentage;

0.32%

● Remark: This grows with the table size.



tsm_system_rows
● CREATE EXTENSION tsm_system_rows;
● like the built-in SYSTEM sampling method  not 

completely random (blocklevel), about the same 
performance, but uses the number of rows as 
parameter, as such more accurate than the 
SYSTEM method

● Not repeatable



tsm_system_time
● like the built-in SYSTEM sampling method  

not completely random (blocklevel)
● u don’t know how many rows will be returned 

in this case, but you have time limit for 
reading the table 

● not repeatable



sampling
Overview

TABLE
SAMPLE RANDOM()

BUILT IN EXTENSIONS

BER
NOUILLI

SYS
TEM

SYSTEM
ROWS

SYSTEM
TIME

ORDER
BY

ADD 
column 
+ Index

REPEATABLE yes yes no no yes yes

RANDOMNESS good less less less good good

PERFORMANCE 3 2 2 1 4              5*

TIME_LIMIT no no no yes no no

EXACT nr 
Of ROWS

almost almost yes no yes yes

* DML is needed (create) or (create and alter) (> TVT)



TVT setup
● I prefer the ADD COLUMN method
● It allows for a clear TVT
● How would you make a TVT with 

TABLESAMPLE? (3 separate/disjunct sets)

 



TVT TABLESAMPLE
● Just using them 3 times will give overlap
● Exclusion?

SELECT *               
FROM  phones_gyroscope TABLESAMPLE                            
      BERNOULLI(30)                                                          
WHERE index NOT IN (:                                                 

SELECT index FROM phones_gyroscope_ts_train:);



:) + processing order



Good samples?
● A basic statistics test on comparing the averages to 

the baseline full table.
● \set kolom arrival_time

● SELECT  'phones_gyroscope' AS tabel ,avg(:kolom), variance(:kolom), count(:kolom)

FROM    phones_gyroscope

UNION   

..

SELECT  'rt_phones_gyropscope_system_time_1000_1',avg(:kolom), variance(:kolom), count(:kolom)

FROM    rt_phones_gyropscope_system_time_1000_1



Avg P (1 sided) Row% Timing

two 
samples

Compared to 'population'

SYSTEM(0,1%)* 5,01E-004 1,05% 4,22E-011 0,10% About 5ms

system_time(1s) 11,86% 40,34% 9,09% 3,65% About 1s

BERNOUILLI(0,1%) 49,04% 46,91% 48,28% 0,10% About 
500ms

SYSTEM(50%) 10,90% 50,00% About 2s

BERNOULLI(50%) 46,13% 50,00% About 3s



Cstore



Cstore
● Debian (install) tips
● Size comparison
● OLAP performance



Debian specific
● $ aptitude install postgresql-server-dev-9.6
● $ pgxn install cstore_fdw



Side note on ALTER SYSTEM
Will result a bad config:

Will not:



Size: relid lookup



Size cstore tables



Size postgresql tables



Size comparison
● Compressed is significantly smaller 

– factor 4 in this case

● Not compressed is about 80%



OLAP Performance
● ROLLUP, CUBE, GROUPING SETS

– “GROUP BY ROLLUP (gt)

– =

– GROUP BY gt

UNION

GROUP BY ()”



OLAP Performance
● If there is where condition that triggers an index, then this 

has a bigger impact than the GROUP BY
● Sorted creation is important for Cstore
● Without indexes cstore compressed is a clear winner
● A compressed cstore was about the same size as an 

index
● Side note: rollup .. vs union's (parallel queries)



On my test tables in general
● slow>faster
● Regular no index>cstore>

cstore_good_sorting>regular index used

● c_regular>c_compressed



Notes about cstore
● No update or delete 

– You can append data

● No indexes, but a lightweigt alternative: 
● For each block, cstore_fdw keeps track of min and max values
● No TABLESAMPLE on foreign tables
● Usage of random() is comparable
● Within these constraints, especially for limiting space consumption, 

Cstore compressed is good option



Orange



Orange
● Setup
● Performance
● Gui
● Side effects
● Demo
● Python
● PL/python



Setup
● mac osx: no problems
● windows: no real problems 
● linux: can cost you a bit more time, the 

guidelines are a bit spread out
– Less stable than PostgreSQL, as probably m... a.. :)



Debian installation tips
● Needed packages: virtualenv git build-essential 

python3 python3-dev python3-openssl python3-sip-
dev aptitude install python3-pyqt4 libqt4-dev python-
qt4-dev

● Use anaconda or pip (or install from git repo)
● $ pgxn install quantile    

– Support SQLTable



Virtualenv 
● Prefered by user or Latest version



Performance
● Memory
● CPU



Memory
● Depending on the widgets being used
● Learning: orange needs the data in memory
● The Orange gui seems practically to allow 

up to 4% of the systems memory for table 
sizes (tested on 8 and 16GB)



Orange suggestions
● Luckily you will get suggestions for handling large data

– Samples are taken using 
● SYSTEM 
● system_time

● Recall that this might be a problem (block based)
– In my practice this often isn't a problem from samplesize of 5% 

– It largely depends on the table size and the randomness within 
the blocks



CPU
● Orange does not always use parallel 

processing, so even if the data fits into 
memory, the single core being used can 
become a bottleneck. Hence the <4% 
suggestion for the gui.

● maximum for the processing before (size)
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Side effects
● When loading data from an existing database table 

Orange creates extra persistent “background” 
tables. 
– - space

– + index

● Several widgets will use these “background” sample 
tables.



Demo



PL/Python
● Access to virtualenv? (Linux)
● plpython3u



CREATE OR REPLACE FUNCTION workon(venv text)
  RETURNS void AS
$BODY$
    import os
    import sys

    if sys.platform in ('win32', 'win64', 'cygwin'):
        activate_this = os.path.join(venv, 'Scripts', 'activate_this.py')
    else:
        if 'PATH' not in os.environ:
            import subprocess
            p=subprocess.Popen('echo -n $PATH', stdout=subprocess.PIPE, shell=True)
            (mypath,err) = p.communicate()
            os.environ['PATH'] = mypath.decode("utf8")
            plpy.info(os.environ['PATH'])                
        activate_this = os.path.join(venv, 'bin', 'activate_this.py')
    exec(open(activate_this).read(), dict(__file__=activate_this))
    plpy.info(os.environ['PATH'])
$BODY$
LANGUAGE plpython3u VOLATILE;



Load the script and continu
SELECT workon('/home/wim/lokaal/orange270417/orange3env');

CREATE OR REPLACE FUNCTION use_orange()

  RETURNS text[] AS

$BODY$

    import Orange

    data = Orange.data.Table("voting")

    classifier = Orange.classification.LogisticRegressionLearner(data)

    c_values = data.domain.class_var.values

    for d in data[5:8]:

        c = classifier(d)

        plpy.info("{}, originally {}".format(c_values[int(classifier(d)[0])],d.get_class()))

    return Orange.version.version

$BODY$

LANGUAGE plpython3u VOLATILE;



Scripts
● Python or PL/Python

– A matter of personal choice

– Eg jupyter notebook



Pgpredict



Documentation (update)
● U need to install the “export model” widget 

following the instructions inside the pgpredict 
archive. 

● U need to create some functions (.sql script)
● Learner: Mean → Constant 
● Requirements: Orange → Orange3



2 learning techniques
● Regression
● Logistic Regression



Workflow
Orange gui → export model → .json file → 
load file in pgpredict function → make 
predictions



PL/Python and reading files..
● File permissions
● User running PL/Python must be able to access 

the files
● In most (linux) setups the postgres user cannot 

read your personal files
● Suggestion: link files to postgres readable location



Test metrics
● Since several evaluation metrics can be 

translated to formulas that fit into SQL

→ U can use them on larger test tables in 
PostgreSQL than in Orange 



Virtual Dessert 





Pictures
● Asciidoc notebook and screenshots, W. Bertels
● Knowlegde management and Business Intelligence slides, S. vanden Broucke
● https://nl.wikipedia.org/wiki/Atomium
● http://drbonnie360.com/post/26932618874/words-with-friends-data-mining
● http://bleacherreport.com/articles/707810-nhl-fashion-faux-pas-the-25-worst-alternate-jerseys-in-hockey-

history
● https://www.r-project.org/
● https://www.python.org/
● http://scala-lang.org/
● http://www.123rf.com/photo_11384266_funny-snowman-catches-a-snowflake-christmas-background.html
● http://www.ncl.ac.uk/computing/news/item/tilteddevicecouldpinpointpinnumberforhackersstudyreveals.html



References
● https://www.postgresql.org/docs/current/static/index.html
● https://orange.biolab.si/
● https://github.com/citusdata/cstore_fdw
● https://www.2ndquadrant.com/en/resources/pgpredict-predictive-analytics-postgresql/
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