PGDAY"*

Wim Bertels RUSSIA 11

UC Leuven-Limburg

KOHO®EPEHLIUA
no 5A3AM AAHHbIX

My experience with
PostgreSQL and Orange in
data mining

$ whoami

I’'m a lecturer at UC Leuven-Limburg In
Belgium teaching database, statistics and
data mining courses for professional
bachelors in applied IT

Data mining

$ man “data mining”

What Is data mining?

r D

2 0412

> MINING

$ man “data mining”

Many definitions
* Phrase to put on a CV to get hired

$ man “data mining”

Many definitions
* Phrase to put on a CV to get hired

* Non-trivial extraction of implicit, previously
unknown and useful information from data

$ man “data mining”

Many definitions
* Phrase to put on a CV to get hired

* Non-trivial extraction of implicit, previously
unknown and useful information from data

* Buzzword used to get money from funding
agencies and venture capital firms

$ man “data mining”

Many definitions

Phrase to put on a CV to get hired

Non-trivial extraction of implicit, previously unknown and useful
iInformation from data

Buzzword used to get money from funding agencies and venture
capital firms

(Semi-)automated exploration and analysis of large dataset to
discover meaningful patterns

$ data mining -h

 Understand the data

» Extract knowlego

* Make predictions about t

e from the data

ne future

elected ed/ form Mined
Data ~ Processe d odel/Patte
a
. . . Supervis
Prep g: sampling, d ising, U .
nsupervis
normalization, feature selection,
dim duction, feature engineering

$ diff 'big data' 'data mining’

What is the difference?

$ diff 'big data' 'data mining’
* Also a phrase to put on CV to get hired..
By some given the same content

- Big = usefull, novel, .. information
* Size
 Resource

A view on data mining

» Exploration

» |earning

- Supervised

* Regression
» Classification

- Unsupervised

Supervised: build models
 Training
» Validation

* (Test)

Build models: sampling

» Random
o Stratified If possible

/

3 common choices

* R
* Python Q

e Scala

(||

Python: Orange

Build upon

e NUMpPY

* SCIpYy
e scikit-learn

General Storage Guidelines

Different systems

* Operational vs Analytica

e Normalized vs Denormalized

Stars, snowflakes and variants

« Facts and dimensions ..
« DWH

Analytical

* Timestamp

- Valid
e From
o Until
- Creation

- 1D

Denormalized

 Performance
* (Olap)

Constraints

* Not a operational datastore

* |f (checks for loading scripts ok),
then (drop unused constraints)

- Integrity of the original data

PostgreSQL as a datastore

e Setup

* Basic tests

e Basic tuning

* Loading the data
e Space

e Sampling

e Cstore

Setup

» Read performance (olap vs oltp)

 Commodity hardware:

— 4 cpu cores
- 8 GB RAM
- KVM

- ext4

Basic tests

* pg_bench

* pg_test fsync
e VM
- pg_test_timing

WEEtiﬂg timing overhead for 3 seconds.
Per loop time i1ncluding overhead: 5Y9.76 nsec
Histogram of timing durations:

< LUsec % of total count
1 94 . 46866 47424935

Z 5.49069 2756423

il O.00064 321

8 0.00184 923
16 0.03651 18328
37 G.00156 755
64 O.00006 28
128 O.00009 43
256 0.00001 4
512 0.00001 5

Basic tuning

e $ free

wim@oranje wolk:~$ free
total used free shared buffers cached
Mem: 8197460 8004656 192804 594108 253312 4480984

-/+ buffers/cache: 3270360 4927100
Swap: 4194300 5532 4188768

(Read) Tuning

shared buffers = '2GB'

shared preload_libraries =
'pg_stat_statements,cstore_fdw'

work_mem = '128MB'
max_parallel_workers per_gather ='2'
effective_cache_size ='4GB' (or 5GB)

Loading the data

« COPY

» https://www.postgresqgl.org/docs/current/static/populate.html

* maintenance_work_mem in the session/script
- SET maintenance_work_mem TO '1GB';
- RESET maintenance_work_mem,;

« Analyze

« Avoid single row inserts (single transaction)

“Streaming data”

 Wifi > Radius > Attendance
» Quickly grows over several weeks..

« VACUUM vs VACUUM FULL

« Manage

https://www.postgresql.org/docs/current/static/populate.html

Tilted device could pinpoint pin number for
hackers, study reveals

Researchers were able to guess a four-digit code with 70% accuracy at the first attempt and
100% at fifth just from how a device was held.

Hackers could steal mobile phone users' pin numbers from the way their devices tilt

as they type on them, researchers have claimed.

Computer scientists at Newcastle University managed to guess a four-digit pin with

70% accuracy at the first attempt by using the gyroscopes built into all modern

smartphones. With five attempts, the team was able to correctly guess the pin 100% of

the time.

Space: after COPY
* CREATE EXTENSION pg_freespacemap;

SELECT *
FROM
WHERE avail <> 0;

R
172030 |

(142810 rows)

Space: another angle

« CREATE EXTENSION pgstattuple;

ml_data=# SELECT *

FROM pgstattuple('phones _gyroscope');
-[RECORD 1 J------ L

table len 1409286144

Ituple _count 13932632

tuple_len 1285578955

tuple_percent 91.22
dead_tuple_count 0
dead_tuple_len

dead_tuple percent 0
free_space 9433564
free _percent 0.67

Space: vacuum side effect

* Running vacuum will not change the
physical table but add a tiny vm table

- + 0,0035%

ml data=# SELECT 'phones_gyroscope' as table_name,
ml _data-; pg_relation_size('phones _gyroscope', 'main') as main,
ml data-; pg_relation_size('phones _gyroscope','fsm') as fsm,
pg_relation_size('phones_gyroscope','vm') as vm,
pg relation_size('phones _gyroscope','init') as 1init,

pg_table_size('phones_gyroscope')
table_name main | init | pg_table_size
------------------ s T e e S R
phones_gyroscope | 1409286144 | 368640 | 49152 | 0 | 1409703936
(1 row)

Sampling
« TABLESAMPLE option (since 9.5)
- SYSTEM or BERNOULLI

* Let's compare them for performance

- First SYSTEM
- Then BERNOULLI

EXPLAIN (ANALYZE true, BUFFERS true, TIMING true)
SELECT *
FROM phones_gyroscope TABLESAMPLE SYSTEM(50);

QUERY PLAN

Sample Scan on phones_gyroscope (cost=0.00..413741.26 rows=6967726
width=61) (actual time=4.201..31722.369 rows=6956984 loops=1)

Sampling: system ('50'::real)

Buffers: shared read=85900
Planning time: 7.857 ms
Execution time: 32351.848 ms
(5 rows)

EXPLAIN (ANALYZE true, BUFFERS true, TIMING true)
SELECT *

FROM phones_gyroscope TABLESAMPLE BERNOULLI(50);

QUERY PLAN
Sample Scan on phones_gyroscope (cost=0.00..241709.26 rows=6967726
width=61) (actual time=2.092..5216.084 rows=6969615 loops=1)
Sampling: bernoulli ('50'::real)
Buffers: shared hit=32 read=172000
Planning time: 0.223 ms
Execution time: 5803.063 ms

Sample: Timings

e Bernoulli seems faster
- 5216.084 ms < 31722.369 ms
« Why?

Explain: cost and time

Method

1. SYSTEM

2. BERNOULLI
3. SYSTEM

Cost

413741.26
241709.26
413741.26

Time
32351.848 ms
5803.063 ms
1710.712 ms

Caching

« CREATE extension pg_buffercache;
» After earn statement the cache grew

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffery README#L208

 From empty to 3*32 after 3 sample scans with
REPEATABLE seed

- 32 8k buffers / sample scan (=sequential scan)
* The cost of EXPLAIN is misleading Iin this case

reset OS Cache

free && sync && echo 3 > /proc/sys/vm/drop_caches && free
- u don't want non synced changes to be lost..

e SYSTEM method Is faster

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README#L208

Optimizing TABLESAMPLE?

e [ndex: no benefit

« Parallel querying: no benefit (9.6)

Other sampling methods

* 50% / 30% / 20% sample (TVT)

- based on random() sort order

- Repeatable: SELECT setseed(0.17);
» Between-1and 1
- 13932632 rows in total

« ORDER BY OR add Column
e tsm_system_ rows and tsm_system_time

random() SORT order

SELECT *

FROM phones_gyroscope
ORDER BY random()

FETCH FIRST 6966316 ROWS ONLY;
-- work_mem

Sort Key: (random())
Sort Method: external merge Disk: 1227512kB

ADD a random() column

e 3 options
- ADD COLUMN aselect double precision;

« UPDATE phones_gyroscope_dm
SET aselect = random();

- ADD COLUMN aselect double precision DEFAULT random();
- CREATE UNLOGGED TABLE phones_gyroscope _dm AS
SELECT *, random() AS aselect
FROM phones_gyroscope;

random(): performance and size

« ADD COLUMN +UPDA

E Is slower than

CREATE UNLOGGED

ABLE

« ADD COLUMN + UPDATE iIs In need of

VACUUM FULL:

ADD COLUMN ADD COLUMN + CREATE

UPDATE
1451 MB 2796 MB

1451 MB

Which one to choose?
e Don't use ADD COLUMN and UPDATE

Final touch for sample tables

* CREATE INDEX ON
phones_gyroscope dm(aselect);

« CLUSTER VERBOSE
phones _gyroscope _dm USING
phones gyroscope dm_aselect idx;

- Remember maintenance_work_mem

Random() =? aselect

WITH ac AS(
SELECT aselect, count() as idem_tally
FROM phones_gyroscope dm
GROUP BY aselect
HAVING count()>1
ORDER BY 2)
SELECT idem_tally, count(*)
FROM ac
GROUP BY ROLLUP (idem_tally)
ORDER BY 1,2;

idem_tally | count

(4 rows)

Collision %

« SELECT 44952.0/13932632*100
AS collision_percentage,;

0.32%

 Remark: This grows with the table size.

tsm_system rows

« CREATE EXTENSION tsm_system_rows;

e like the built-in SYSTEM sampling method not
completely random (blocklevel), about the same
performance, but uses the number of rows as
parameter, as such more accurate than the
SYSTEM method

* Not repeatable

tsm_system time
* like the built-in SYSTEM sampling method
not completely random (blocklevel)

e U don’t know how many rows will be returned
In this case, but you have time limit for
reading the table

* not repeatable

sampling TABLE

Overview SAMPLE RANDOM()

BUILT IN EXTENSIONS

BER SYS SYSTEM SYSTEM ORDER ADD

NOUILLI TEM ROWS TIME BY column

+ Index

REPEATABLE yes yes no no yes yes
RANDOMNESS good good good
PERFORMANCE 2 2 1 4 5*
TIME_LIMIT no no no yes no no
EXACT nr yes no yes yes
Of ROWS

* DML is needed (create) or (create and alter) (> TVT)

TVT setup

* | prefer the ADD COLUMN method
e |t allows for a clear TVT

 How would you make a TVT with
TABLESAMPLE? (3 separate/disjunct sets)

TVT TABLESAMPLE

» Just using them 3 times will give overlap

e Exclusion?

SELECT ~*
FROM phones gyroscope TABLESAMPLE
BERNOULLI(30)
WHERE index NOT IN (:
SELECT index FROM phones_gyroscope_ts_train:);

') + processing order

Planning time: 0.103 ms
Execution time: 357532201.668 ms
(12 rows)

-- 357532201.668/1000/60/60/24 = 4 days

-- What about the number of rows? 2014

-- Why isn't this the same as before, ie 4180027

-- Then why isn't this closer to 4180027/2 = 2090013

-- Don't trust your data..

-- The title of the column index is misleading, it is not unique..

Good samples?

A basic statistics test on comparing the averages to
the baseline full table.

\set kolom arrival_time

SELECT 'phones_gyroscope' AS tabel ,avg(:kolom), variance(:kolom), count(:kolom)
FROM phones_gyroscope

UNION

SELECT 'rt_phones_gyropscope_system_time_1000_1',avg(:kolom), variance(:kolom), count(:kolom)

FROM rt_phones_gyropscope_system_time 1000 1

Avg

SYSTEM(0,1%)*

system_time(1s)

BERNOUILLI(0,1%)

SYSTEM(50%)
BERNOULLI(50%)

P (1 sided)

two
samples

5,01E-004

11,86%

49,04%

1,05%

40,34%

46,91%

10,90%
46,13%

Compared to 'population’

4,22E-011

9,09%

48,28%

Row%

0,10%

3,65%

0,10%

50,00%
50,00%

Timing

About 5ms

About 1s

About
500ms

About 2s
About 3s

Cstore

Cstore

* Debian (install) tips
* Size comparison
 OLAP performance

Debian specific

 $ aptitude install postgresql-server-dev-9.6
« $ pgxn install cstore_fdw

Side note on ALTER SYSTEM

Will result a bad config:

alter system set shared_preload_libraries =
'pg_stat_statements,cstore_fdw';

Will not:

alter system set shared_preload_libraries =
pg_stat_statements,cstore_fdw;

alter system set shared_preload_libraries 'pg_stat_statements';

alter system set shared_preload_libraries = pg_stat_statements;

Size: relid lookup
SELECT * FROM pg_foreign_table;

ftrelid | ftserver | ftoptions
......... L
16755 | 16742 | {compression=pglz}
16758 | 16742 |
(2 rows)

-- or use the option filename on creation of a cstore FT

Size cstore tables

1ls -sSh /var/lib/postgresql/9.6/main/cstore_fdw/16386/
total 1.4G

1.1G 16758

352M 16755

4.0K 16758.footer

4.0K 16755.footer

Size postgresgl tables

SELECT pg_relation_filepath('phones_gyroscope');

pg_relation_filepath

base/16386/16692

11, Tijd voor een micro-pauze?
1s -sh /var/lib/pc Q‘j,;@ Verdwint over 025 5/16692*
1.1G /var/lib/postgre)2

320M /var/lib/postgresql/9.6/main/base/16386/16692.1
360K /var/lib/postgresql/9.6/main/base/16386/16692_fsm
48K /var/lib/postgresql/9.6/main/base/16386/16692_vm

Size comparison

 Compressed Is significantly smaller
- factor 4 in this case
* Not compressed is about 80%

OLAP Performance

« ROLLUP, CUBE, GROUPING SETS
- “GROUP BY ROLLUP (gt)

- GROUP BY gt
UNION
GROUP BY ()"

OLAP Performance

* If there is where condition that triggers an index, then this
has a bigger impact than the GROUP BY

« Sorted creation is important for Cstore
« Without indexes cstore compressed is a clear winner

« A compressed cstore was about the same size as an
Index

« Side note: rollup .. vs union's (parallel queries)

On my test tables in general

» slow>faster
» Reqgular no index>cstore>
cstore _good_sorting>regular index used

* C_reqgular>c_compressed

Notes about cstore

No update or delete
- You can append data
No indexes, but a lightweigt alternative:

For each block, cstore fdw keeps track of min and max values
No TABLESAMPLE on foreign tables
Usage of random() is comparable

Within these constraints, especially for limiting space consumption,
Cstore compressed is good option

Setup
Performance
Gui

Side effects
Demo
Python
PL/python

Orange

Setup

* mac 0sX. no problems

e windows: no real problems

* [inux: can cost you a bit more time, the
guidelines are a bit spread out

- Less stable than PostgreSQL, as probably m... a.. ;)

Debian installation tips

 Needed packages: virtualenv git build-essential
python3 python3-dev python3-openssl python3-sip-
dev aptitude install python3-pyqt4 libgt4-dev python-
gt4-dev

« Use anaconda or pip (or install from git repo)

« $ pgxn install quantile
- Support SQLTable

Virtualenv

» Prefered by user or Latest version

#!/bin/bash
cd lokaal/orange270417/

source orange3env/bin/activate
orange-canvas

Performance

« Memory
« CPU

Memory

* Depending on the widgets being used
* Learning: orange needs the data in memory

* The Orange gui seems practically to allow
up to 4% of the systems memory for table
sizes (tested on 8 and 16GB)

ValueError: Too many rows to download the data into memory. For the full table.

Orange suggestions

 Luckily you will get suggestions for handling large data

- Samples are taken using
- SYSTEM
e system_time

» Recall that this might be a problem (block based)

- In my practice this often isn't a problem from samplesize of 5%

- It largely depends on the table size and the randomness within
the blocks

CPU

* Orange does not always use parallel
processing, so even if the data fits into
memory, the single core being used can
become a bottleneck. Hence the <4%
suggestion for the gui.

 maximum for the processing before (size)

7000

6000

f(x) =4,27x + 165,79
00 R2=1,00

4000

B Res Memory
Lineair (Res Memory)

3000
2000

1000

; Factor 4 (to 12)

0 200 400 600 800 1000 1200 1400

Side effects

* When loading data from an existing database table
Orange creates extra persistent “background”
tables.

- - space
- + Index

« Several widgets will use these “background” sample
tables.

Demo

PL/Python

* Access to virtualenv? (Linux)
* plpython3u

CREATE OR REPLACE FUNCTION workon(venv text)
RETURNS void AS

$BODYS$
import os
import sys

if sys.platform in (‘win32', 'win64', 'cygwin’):

activate_this = os.path.join(venv, 'Scripts’, ‘activate_this.py')
else:

if 'PATH' not in os.environ:
import subprocess
p=subprocess.Popen(‘echo -n $PATH', stdout=subprocess.PIPE, shell=True)
(mypath,err) = p.communicate()
os.environ['PATH'] = mypath.decode("utf8")
plpy.info(os.environ['PATH')

activate_this = os.path.join(venv, 'bin’, 'activate_this.py')

exec(open(activate this).read(), dict(__file =activate _this))

plpy.info(os.environ['PATH'])
$BODYS$

LANGUAGE plpython3u VOLATILE;

Load the script and continu

SELECT workon('/home/wim/lokaal/orange270417/orange3env’);

CREATE OR REPLACE FUNCTION use_orange()
RETURNS text[] AS
$BODY$
import Orange
data = Orange.data.Table("voting")
classifier = Orange.classification.LogisticRegressionLearner(data)
c_values = data.domain.class_var.values
for d in data[5:8]:
¢ = classifier(d)
plpy.info("{}, originally {}".format(c_values[int(classifier(d)[0])],d.get_class()))
return Orange.version.version
$BODY$
LANGUAGE plpython3u VOLATILE;

Scripts
* Python or PL/Python

- A matter of personal choice
- Eg jupyter notebook

In [5]:

import Orange

data = Orange. data. Table("titanic")

printidata. demain)

tree = Orange. classification. tree. TreeLearnerimax_depth=3)
knn = Orange. classification. knn. KNHLearner(n_neighbors=3)
Lr = Orange. classification. LogisticRegressionlearner(C=0.1)
learners = [tree, knn, 1r]

printl" "®9 + " " Jain]"%-4s" % learner. name for learrer in learners))

res = Orange. evaluation. CrossWalidation(data, learners, k=5)

printi"Accuracy %s" % " ".jein("%. 2f" % s for s in Orange. evaluation. CAlres)))
printi "AUC %s" % " " join|"s 2f" % s for s in Orange. evaluation. AUC(res)))

[status, age, sex | survived]

tree knn logistic regression

Accuracy 0.79 0.47 0.78

0.77 0.67 8.73

Add kg

Pgpredict

Documentation (update)

* U need to install the “export model” widget
following the instructions inside the pgpredict
archive.

* U need to create some functions (.sql script)
e Learner: Mean — Constant
 Requirements: Orange — Orange3

2 learning techniques

Regression

_ogistic Regression

Workflow

Orange gui — export model - .json file -
load file in pgpredict function - make
pl’edICtIOHS Train Predict

// \\ //'T\\

\l model.js

g EA "ﬂ¥ .

\& / / \O& 4_’/

data exploratio real-time deployment
mode I electio
parameter optlmlzatlon

PL/Python and reading files..

File permissions

User running PL/Python must be able to access
the files

In most (linux) setups the postgres user cannot
read your personal files

Suggestion: link files to postgres readable location

Test metrics

 Since several evaluation metrics can be
translated to formulas that fit into SQL

— U can use them on larger test tables In
PostgreSQL than in Orange

Gain Ratio Gini
b ‘ (o} H 0.2008610816039577 H 0.0664397373536324 |
y ‘ C H 0.19008980163900854 H 0.06436997486185836 |
z ‘ C H 0.16244158444581458 H 0.057384353461334636 |

arrival_time C
a_user

9
creation_time C
6
3

0.013601482535869014
0.0053348719914332226
0.0017263786829775363

0.005664211694364152

0.0032555228185622287
walk

0.000702294752144339

17.1%, E?JE.I'E-!.I]E

=

—

device 0.0010651193564932572 0.00045320863845610404
model 0.00024151028213993054 6.932095224121415e-05 =
= 0,069

= -0.037

walk

£4.4%; 39387

sit
22.4%, BOSBEF 359

T —— > 0,037

E1
A0 1%, 27119]“b

161

Virtual Dessert

= 1424788706928, 000

> 0.06%

walk

25. 0%, 38377152

arrmval_tirme

wralk

26.2%K, 38377146

z | ¥ arrival_time
-] —
s 0601 __—" > 0,601 = -0.0B2 =51 4R08E 7980860, 000 ———
wealk stairsdawn stairsdowen sit walk walk
26,28, 3566136 38.9%. 9882537 21.8%. 329/1511 43.2%, TER4/182 TE.G6X, 503640 23.6%, 3335714
arrival_time arrival_time ¥ ¥ arrval_time arrival_time
[] [L] []]]

> 1424788TE6928 000

bk
55.1%, 332/603 i

afrival_time

> 142478911 5665.000

THE WALL STREET JOURNAL.

ace fiction, facial-scanning cameras are becoming a part of daily life in China, where they're used for marketing, surveillance and social control. Video:
3

WORLD | ASIA | CHINA NEWS

China’s All-Seeing Surveillance State Is Reading Its
Citizens’ Faces

In vast social-engineering experiment, facial-recognition systems crunch data from ubiquitous
cameras to monitor citizens

Pictures

Asciidoc notebook and screenshots, W. Bertels

Knowlegde management and Business Intelligence slides, S. vanden Broucke
https://nl.wikipedia.org/wiki/Atomium
http://drbonnie360.com/post/26932618874/words-with-friends-data-mining

http://bleacherreport.com/articles/707810-nhl-fashion-faux-pas-the-25-worst-alternate-jerseys-in-hockey-
history

https://www.r-project.org/

https://www.python.org/

http://scala-lang.org/
http://www.123rf.com/photo_11384266_funny-snowman-catches-a-snowflake-christmas-background.html
http://www.ncl.ac.uk/computing/news/item/tilteddevicecouldpinpointpinnumberforhackersstudyreveals.html

References

https://www.postgresqgl.org/docs/current/static/index.html

https://orange.biolab.si/

https://github.com/citusdata/cstore_fdw
https://www.2ndquadrant.com/en/resources/pgpredict-predictive-analytics-postgresql/

Released under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0) License. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Wim Bertels

https://nl.wikipedia.org/wiki/Atomium

	Dia 1
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58
	Dia 59
	Dia 60
	Dia 61
	Dia 62
	Dia 63
	Dia 64
	Dia 65
	Dia 66
	Dia 67
	Dia 68
	Dia 69
	Dia 70
	Dia 71
	Dia 72
	Dia 73
	Dia 74
	Dia 75
	Dia 76
	Dia 77
	Dia 78
	Dia 79
	Dia 80
	Dia 81
	Dia 82
	Dia 83
	Dia 84
	Dia 85
	Dia 86
	Dia 87
	Dia 88
	Dia 89
	Dia 90
	Dia 91
	Dia 92
	Dia 93
	Dia 94
	Dia 95
	Dia 96
	Dia 97
	Dia 98

