
My experience with
PostgreSQL and Orange in

data mining

Wim Bertels
UC Leuven-Limburg

$ whoami

I’m a lecturer at UC Leuven-Limburg in
Belgium teaching database, statistics and

data mining courses for professional
bachelors in applied IT

Data mining

$ man “data mining”

What is data mining?

$ man “data mining”
Many definitions
● Phrase to put on a CV to get hired

$ man “data mining”
Many definitions
● Phrase to put on a CV to get hired
● Non‐trivial extraction of implicit, previously

unknown and useful information from data

$ man “data mining”
Many definitions
● Phrase to put on a CV to get hired
● Non‐trivial extraction of implicit, previously

unknown and useful information from data
● Buzzword used to get money from funding

agencies and venture capital firms

$ man “data mining”
Many definitions
● Phrase to put on a CV to get hired
● Non‐trivial extraction of implicit, previously unknown and useful

information from data
● Buzzword used to get money from funding agencies and venture

capital firms
● (Semi-)automated exploration and analysis of large dataset to

discover meaningful patterns

 $ data mining -h
● Understand the data
● Extract knowlegde from the data
● Make predictions about the future

$ diff 'big data' 'data mining'

What is the difference?

$ diff 'big data' 'data mining'
● Also a phrase to put on CV to get hired..
● By some given the same content

– Big = usefull, novel, .. information

● Size
● Resource

A view on data mining
● Exploration
● Learning

– Supervised
● Regression
● Classification

– Unsupervised

Supervised: build models
● Training
● Validation
● (Test)

Build models: sampling
● Random
● Stratified if possible

3 common choices
● R
● Python
● Scala

Python: Orange
Build upon
● numpy
● scipy
● scikit-learn

General Storage Guidelines

Different systems
● Operational vs Analytical
● Normalized vs Denormalized

Stars, snowflakes and variants
● Facts and dimensions ..
● DWH

Analytical
● Timestamp

– Valid
● From
● Until

– Creation

– ID

– ..

Denormalized
● Performance
● (Olap)

Constraints
● Not a operational datastore
● If (checks for loading scripts ok),

then (drop unused constraints)
– Integrity of the original data

PostgreSQL as a datastore

PostgreSQL as a datastore
● Setup
● Basic tests
● Basic tuning
● Loading the data
● Space
● Sampling
● Cstore

Setup
● Read performance (olap vs oltp)
● Commodity hardware:

– 4 cpu cores

– 8 GB RAM

– KVM

– ext4

Basic tests
● pg_bench
● pg_test_fsync
● Vm

– pg_test_timing

Basic tuning
● $ free

(Read) Tuning
● shared_buffers = '2GB'
● shared_preload_libraries =

'pg_stat_statements,cstore_fdw'
● work_mem = '128MB'
● max_parallel_workers_per_gather = '2'
● effective_cache_size = '4GB' (or 5GB)

Loading the data
● COPY
● https://www.postgresql.org/docs/current/static/populate.html

● maintenance_work_mem in the session/script
– SET maintenance_work_mem TO '1GB';

– RESET maintenance_work_mem;

● Analyze

● Avoid single row inserts (single transaction)

“Streaming data”
● Wifi > Radius > Attendance
● Quickly grows over several weeks..

● VACUUM vs VACUUM FULL

● Manage

https://www.postgresql.org/docs/current/static/populate.html

Space: after COPY
● CREATE EXTENSION pg_freespacemap;

Space: another angle
● CREATE EXTENSION pgstattuple;

Space: vacuum side effect
● Running vacuum will not change the

physical table but add a tiny vm table
– + 0,0035%

Sampling
● TABLESAMPLE option (since 9.5)

– SYSTEM or BERNOULLI

● Let's compare them for performance
– First SYSTEM

– Then BERNOULLI

Sample: Timings
● Bernoulli seems faster

– 5216.084 ms < 31722.369 ms

● Why?

Explain: cost and time

Method Cost Time

1. SYSTEM 413741.26 32351.848 ms

2. BERNOULLI 241709.26 5803.063 ms

3. SYSTEM 413741.26 1710.712 ms

Caching
● CREATE extension pg_buffercache;
● After earn statement the cache grew

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README#L208

● From empty to 3*32 after 3 sample scans with
REPEATABLE seed
– 32 8k buffers / sample scan (=sequential scan)

● The cost of EXPLAIN is misleading in this case

reset OS Cache

● SYSTEM method is faster

https://github.com/postgres/postgres/blob/master/src/backend/storage/buffer/README#L208

Optimizing TABLESAMPLE?
● Index: no benefit
● Parallel querying: no benefit (9.6)

Other sampling methods
● 50% / 30% / 20% sample (TVT)

– based on random() sort order

– Repeatable: SELECT setseed(0.17);
● Between -1 and 1

– 13932632 rows in total

● ORDER BY OR add Column
● tsm_system_rows and tsm_system_time

random() SORT order
SELECT *

FROM phones_gyroscope

ORDER BY random()

FETCH FIRST 6966316 ROWS ONLY;

-- work_mem

ADD a random() column
● 3 options

– ADD COLUMN aselect double precision;
● UPDATE phones_gyroscope_dm

SET aselect = random();

– ADD COLUMN aselect double precision DEFAULT random();

– CREATE UNLOGGED TABLE phones_gyroscope_dm AS

 SELECT *, random() AS aselect

 FROM phones_gyroscope;

random(): performance and size
● ADD COLUMN +UPDATE is slower than

CREATE UNLOGGED TABLE
● ADD COLUMN + UPDATE is in need of

VACUUM FULL:

ADD COLUMN ADD COLUMN +
UPDATE

CREATE

1451 MB 2796 MB 1451 MB

Which one to choose?
● Don't use ADD COLUMN and UPDATE

Final touch for sample tables
● CREATE INDEX ON

phones_gyroscope_dm(aselect);
● CLUSTER VERBOSE

phones_gyroscope_dm USING
phones_gyroscope_dm_aselect_idx;
– Remember maintenance_work_mem

Random() =? aselect
WITH ac AS(

 SELECT aselect, count() as idem_tally

 FROM phones_gyroscope_dm

 GROUP BY aselect

 HAVING count()>1

 ORDER BY 2)

SELECT idem_tally, count(*)

FROM ac

GROUP BY ROLLUP (idem_tally)

ORDER BY 1,2;

Collision %
● SELECT 44952.0/13932632*100

 AS collision_percentage;

0.32%

● Remark: This grows with the table size.

tsm_system_rows
● CREATE EXTENSION tsm_system_rows;
● like the built-in SYSTEM sampling method not

completely random (blocklevel), about the same
performance, but uses the number of rows as
parameter, as such more accurate than the
SYSTEM method

● Not repeatable

tsm_system_time
● like the built-in SYSTEM sampling method

not completely random (blocklevel)
● u don’t know how many rows will be returned

in this case, but you have time limit for
reading the table

● not repeatable

sampling
Overview

TABLE
SAMPLE RANDOM()

BUILT IN EXTENSIONS

BER
NOUILLI

SYS
TEM

SYSTEM
ROWS

SYSTEM
TIME

ORDER
BY

ADD
column
+ Index

REPEATABLE yes yes no no yes yes

RANDOMNESS good less less less good good

PERFORMANCE 3 2 2 1 4 5*

TIME_LIMIT no no no yes no no

EXACT nr
Of ROWS

almost almost yes no yes yes

* DML is needed (create) or (create and alter) (> TVT)

TVT setup
● I prefer the ADD COLUMN method
● It allows for a clear TVT
● How would you make a TVT with

TABLESAMPLE? (3 separate/disjunct sets)

TVT TABLESAMPLE
● Just using them 3 times will give overlap
● Exclusion?

SELECT *
FROM phones_gyroscope TABLESAMPLE
 BERNOULLI(30)
WHERE index NOT IN (:

SELECT index FROM phones_gyroscope_ts_train:);

:) + processing order

Good samples?
● A basic statistics test on comparing the averages to

the baseline full table.
● \set kolom arrival_time

● SELECT 'phones_gyroscope' AS tabel ,avg(:kolom), variance(:kolom), count(:kolom)

FROM phones_gyroscope

UNION

..

SELECT 'rt_phones_gyropscope_system_time_1000_1',avg(:kolom), variance(:kolom), count(:kolom)

FROM rt_phones_gyropscope_system_time_1000_1

Avg P (1 sided) Row% Timing

two
samples

Compared to 'population'

SYSTEM(0,1%)* 5,01E-004 1,05% 4,22E-011 0,10% About 5ms

system_time(1s) 11,86% 40,34% 9,09% 3,65% About 1s

BERNOUILLI(0,1%) 49,04% 46,91% 48,28% 0,10% About
500ms

SYSTEM(50%) 10,90% 50,00% About 2s

BERNOULLI(50%) 46,13% 50,00% About 3s

Cstore

Cstore
● Debian (install) tips
● Size comparison
● OLAP performance

Debian specific
● $ aptitude install postgresql-server-dev-9.6
● $ pgxn install cstore_fdw

Side note on ALTER SYSTEM
Will result a bad config:

Will not:

Size: relid lookup

Size cstore tables

Size postgresql tables

Size comparison
● Compressed is significantly smaller

– factor 4 in this case

● Not compressed is about 80%

OLAP Performance
● ROLLUP, CUBE, GROUPING SETS

– “GROUP BY ROLLUP (gt)

– =

– GROUP BY gt

UNION

GROUP BY ()”

OLAP Performance
● If there is where condition that triggers an index, then this

has a bigger impact than the GROUP BY
● Sorted creation is important for Cstore
● Without indexes cstore compressed is a clear winner
● A compressed cstore was about the same size as an

index
● Side note: rollup .. vs union's (parallel queries)

On my test tables in general
● slow>faster
● Regular no index>cstore>

cstore_good_sorting>regular index used

● c_regular>c_compressed

Notes about cstore
● No update or delete

– You can append data

● No indexes, but a lightweigt alternative:
● For each block, cstore_fdw keeps track of min and max values
● No TABLESAMPLE on foreign tables
● Usage of random() is comparable
● Within these constraints, especially for limiting space consumption,

Cstore compressed is good option

Orange

Orange
● Setup
● Performance
● Gui
● Side effects
● Demo
● Python
● PL/python

Setup
● mac osx: no problems
● windows: no real problems
● linux: can cost you a bit more time, the

guidelines are a bit spread out
– Less stable than PostgreSQL, as probably m... a.. :)

Debian installation tips
● Needed packages: virtualenv git build-essential

python3 python3-dev python3-openssl python3-sip-
dev aptitude install python3-pyqt4 libqt4-dev python-
qt4-dev

● Use anaconda or pip (or install from git repo)
● $ pgxn install quantile

– Support SQLTable

Virtualenv
● Prefered by user or Latest version

Performance
● Memory
● CPU

Memory
● Depending on the widgets being used
● Learning: orange needs the data in memory
● The Orange gui seems practically to allow

up to 4% of the systems memory for table
sizes (tested on 8 and 16GB)

Orange suggestions
● Luckily you will get suggestions for handling large data

– Samples are taken using
● SYSTEM
● system_time

● Recall that this might be a problem (block based)
– In my practice this often isn't a problem from samplesize of 5%

– It largely depends on the table size and the randomness within
the blocks

CPU
● Orange does not always use parallel

processing, so even if the data fits into
memory, the single core being used can
become a bottleneck. Hence the <4%
suggestion for the gui.

● maximum for the processing before (size)

0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

5000

6000

7000

f(x) = 4,27x + 165,79
R² = 1,00

Res Memory

Lineair (Res Memory)

Factor 4 (to 12)

Side effects
● When loading data from an existing database table

Orange creates extra persistent “background”
tables.
– - space

– + index

● Several widgets will use these “background” sample
tables.

Demo

PL/Python
● Access to virtualenv? (Linux)
● plpython3u

CREATE OR REPLACE FUNCTION workon(venv text)
 RETURNS void AS
$BODY$
 import os
 import sys

 if sys.platform in ('win32', 'win64', 'cygwin'):
 activate_this = os.path.join(venv, 'Scripts', 'activate_this.py')
 else:
 if 'PATH' not in os.environ:
 import subprocess
 p=subprocess.Popen('echo -n $PATH', stdout=subprocess.PIPE, shell=True)
 (mypath,err) = p.communicate()
 os.environ['PATH'] = mypath.decode("utf8")
 plpy.info(os.environ['PATH'])
 activate_this = os.path.join(venv, 'bin', 'activate_this.py')
 exec(open(activate_this).read(), dict(__file__=activate_this))
 plpy.info(os.environ['PATH'])
$BODY$
LANGUAGE plpython3u VOLATILE;

Load the script and continu
SELECT workon('/home/wim/lokaal/orange270417/orange3env');

CREATE OR REPLACE FUNCTION use_orange()

 RETURNS text[] AS

$BODY$

 import Orange

 data = Orange.data.Table("voting")

 classifier = Orange.classification.LogisticRegressionLearner(data)

 c_values = data.domain.class_var.values

 for d in data[5:8]:

 c = classifier(d)

 plpy.info("{}, originally {}".format(c_values[int(classifier(d)[0])],d.get_class()))

 return Orange.version.version

$BODY$

LANGUAGE plpython3u VOLATILE;

Scripts
● Python or PL/Python

– A matter of personal choice

– Eg jupyter notebook

Pgpredict

Documentation (update)
● U need to install the “export model” widget

following the instructions inside the pgpredict
archive.

● U need to create some functions (.sql script)
● Learner: Mean → Constant
● Requirements: Orange → Orange3

2 learning techniques
● Regression
● Logistic Regression

Workflow
Orange gui → export model → .json file →
load file in pgpredict function → make
predictions

PL/Python and reading files..
● File permissions
● User running PL/Python must be able to access

the files
● In most (linux) setups the postgres user cannot

read your personal files
● Suggestion: link files to postgres readable location

Test metrics
● Since several evaluation metrics can be

translated to formulas that fit into SQL

→ U can use them on larger test tables in
PostgreSQL than in Orange

Virtual Dessert

Pictures
● Asciidoc notebook and screenshots, W. Bertels
● Knowlegde management and Business Intelligence slides, S. vanden Broucke
● https://nl.wikipedia.org/wiki/Atomium
● http://drbonnie360.com/post/26932618874/words-with-friends-data-mining
● http://bleacherreport.com/articles/707810-nhl-fashion-faux-pas-the-25-worst-alternate-jerseys-in-hockey-

history
● https://www.r-project.org/
● https://www.python.org/
● http://scala-lang.org/
● http://www.123rf.com/photo_11384266_funny-snowman-catches-a-snowflake-christmas-background.html
● http://www.ncl.ac.uk/computing/news/item/tilteddevicecouldpinpointpinnumberforhackersstudyreveals.html

References
● https://www.postgresql.org/docs/current/static/index.html
● https://orange.biolab.si/
● https://github.com/citusdata/cstore_fdw
● https://www.2ndquadrant.com/en/resources/pgpredict-predictive-analytics-postgresql/

Released under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0) License. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Wim Bertels

https://nl.wikipedia.org/wiki/Atomium

	Dia 1
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58
	Dia 59
	Dia 60
	Dia 61
	Dia 62
	Dia 63
	Dia 64
	Dia 65
	Dia 66
	Dia 67
	Dia 68
	Dia 69
	Dia 70
	Dia 71
	Dia 72
	Dia 73
	Dia 74
	Dia 75
	Dia 76
	Dia 77
	Dia 78
	Dia 79
	Dia 80
	Dia 81
	Dia 82
	Dia 83
	Dia 84
	Dia 85
	Dia 86
	Dia 87
	Dia 88
	Dia 89
	Dia 90
	Dia 91
	Dia 92
	Dia 93
	Dia 94
	Dia 95
	Dia 96
	Dia 97
	Dia 98

