
Automated Upgrades of
PostgreSQL Clusters in Cloud

Gülçin Yıldırım

1

select * from me;
Site Reliability Engineer @

Board Member @

MSc Comp. & Systems Eng. @

Writes on 2ndQuadrant

Does some childish

Loves independent films

From Turkey

2ndQuadrant

PostgreSQL Europe

Tallinn University of Technology

blog

paintings

@

Skype: gulcin2ndq

Github:

apatheticmagpie

gulcin 2

http://2ndquadrant.com/en-us/
https://www.postgresql.eu/about/board/
http://www.ttu.ee/?id=25420
http://blog.2ndquadrant.com/author/gulcin-yildirim/
https://instagram.com/apatheticmagpie/
https://twitter.com/apatheticmagpie
https://github.com/gulcin

Agenda
Database Upgrades
Why Logical Replication?
Platform Implementation
Case Studies & Results
Applicability & Limitations
Conclusion

3

Problems?
DOWNTIME

Revenue Loss Reputation Loss

High
Availability?

SLAs? Low Capacity?

4

Database Anyone?
Banks

Social Networks
Desktop Apps

Startups

Medium-size
Enterprises

5

Upgrade,or not to Upgrade

New features
Security patches
Perfomance Updates
Bug fixes

Outdated, no support
Vulnerable to attacks
Poor Perfomance
Buggy, hard to maintain6

Why Automate?

Risk & Errors
Cost
Time-to-market

Reproducibility
Repeatability
Efficiency

Updating nasa.gov: 1 hr to 5 mins
Patching updates: Multi-day to 45 mins
Application stack setup: 1-2 hrs to 10 mins

7

Ansible Loves PostgreSQL
(in the s)

Postgres Modules: 6AWS Modules: 100

PostgreSQL
252

Database
208

Cloud
116

Upgrade
50

8

Database Upgrades
1 2

3 4

same or compatible
storage format
hard to guarantee
performance
optimization - data
structures

logical copy (dump)
load into new server
traditional approach
offline (downtime)

convert data from
old format to new
can be online (perf?)
offline (downtime)
often shorter (2nd)

logical dump (restore)
capture changes while
upgrade
replicate after restore
min downtime

9

Logical Replication Rocks!
Offline Conversion

pg_dump/pg_restore
pg_upgrade

Online Conversion

pglogical
pglupgrade

1

2
10

Elements of the solution
pglogical pgbouncer

Ansible AWS
pglupgrade 11

Pglupgrade playbook
[old-primary]
54.171.211.188

[new-primary]
54.246.183.100

[old-standbys]
54.77.249.81
54.154.49.180

[new-standbys:children]
old-standbys

[pgbouncer]
54.154.49.180

$ ansible-playbook -i hosts.ini pglupgrade.yml

Inventory file host.ini

Running pglupgrade playbook

8 plays

config.yml

host.ini

orchestrates

the upgrade

operation

12

Pglupgrade playbook
ansible_user: admin

pglupgrade_user: pglupgrade
pglupgrade_pass: pglupgrade123
pglupgrade_database: postgres

replica_user: postgres
replica_pass: ""

pgbouncer_user: pgbouncer

postgres_old_version: 9.5
postgres_new_version: 9.6

subscription_name: upgrade
replication_set: upgrade

initial_standbys: 1

postgres_old_dsn: "dbname={{pglupgrade_database}} host={{groups['old-primary'][0]}} user={{pglupgrade_user}}"
postgres_new_dsn: "dbname={{pglupgrade_database}} host={{groups['new-primary'][0]}} user={{pglupgrade_user}}"

postgres_old_datadir: "/var/lib/postgresql/{{postgres_old_version}}/main"
postgres_new_datadir: "/var/lib/postgresql/{{postgres_new_version}}/main"

postgres_new_confdir: "/etc/postgresql/{{postgres_new_version}}/main"

config.yml
13

How
Does It
Work?

1 2 3

4

5

6

7

8

9

10

11

12 13

14

15

16

14

1st Case: High Availability

15

1st Case: High Availability

16

2nd Case: Read Scalability

17

2nd Case: Read Scalability

18

Test Environment
Amazon EC2 t2.medium instances
2 Virtual CPUs
4 GB of RAM for memory
110 GB EBS for storage
pgbench scale factor 2000

PostgreSQL 9.5.6
PostgreSQL 9.6.1
Ubuntu 16.04
PgBouncer 1.7.2
Pglogical 2.0.0

19

Results
Metric (1st case) pg_dump/pg_restore pg_upgrade pglupgrade

Primary Downtime 00:24:27 00:16:25 00:00:03

Partial cluster HA 00:24:27 00:28:56 00:00:03

Full cluster capacity 01:02:27 00:28:56 00:38:00

Length of upgrade 01:02:27 00:28:56 01:38:10

Extra disk space 800 MB 27 GB 10 GB

Metric (2nd case) pg_dump/pg_restore pg_upgrade pglupgrade

Primary Downtime 00:23:52 00:17:03 00:00:05

Partial cluster HA 00:23:52 00:54:29 00:00:05

Full cluster capacity 00:23:52 03:19:16 00:00:05

Length of upgrade 00:23:52 03:19:16 01:02:10

Extra disk space 800 MB 27 GB 10 GB 20

Interpreting the Results

Database size growth during logical replication initialization
21

Interpreting the Results

 Transaction rate and latency during standby cloning process
22

Interpreting the Results

Transaction rate and latency during the upgrade process
23

Back to the Future
Need for a near-zero downtime automated upgrade solution
for PostgreSQL []
The tool will have a use in and our customers
PostgreSQL 10 will have built-in logical replication

PgCon 2017 Developer Meeting
2ndQuadrant

24

https://wiki.postgresql.org/wiki/PgCon_2017_Developer_Meeting
http://www.2ndquadrant.com/

Applicability
Traditional data centers (bare-metal or virtual)
Other Operating Systems (i.e Windows)
Other DBMSs through logical replication (i.e MySQL, Oracle)
Can work without PgBouncer

25

Limitations
Spare resources on primary server (initial data copy)
Cluster with too many writes (logical rep. catchup)
Tables with PKs (or insert-only tables) - Postgres 10
No transparent DDL replication

26

https://dribbble.com/shots/2102693-Dumbo-Drop

Conclusion
Database clusters can be upgraded with minimal
downtime without users being affected while the
upgrade is happening.

An application can still respond to the request only
with a small drop in performance.

Case studies prove that pglupgrade minimizes the
downtime to the level of 3-5 seconds.

27

Thanks!

28

Questions

29

