Hyperledger Fabric

the architecture of the permissioned ledger

Artem Barger
(bartem@il.ibm.com)



About me...

* IBM Haifa Lab Cloud Foundation Research
* 10+ years of experience in design and development of distributed system
* Maintainer of Linux Foundation Hyperledger Project
* Decent background in Java server side devlopment
* ASF Committer (Apache Commons) @ ——
ey Wl S e i

o ¢ ¢ ipasind deva Brogmmmer SolwareBng TN 341 70
4o o
A U4

23,110 reputaion

8 a9 * 55

© IBM Corporation, 2017 2 Artem Barger (bartem@il.ibom.com)



Outline

* Blockchain
v/ Basic concepts
v/ Permissionless (Bitcoint, Etherium) vs Permissioned (Hyperledger)

* Hyperledger
v/ Previous architecture
v/ Driving towards more scalable and secure architecture
v/ Better privacy
v/ ldentity Management

OQA

© IBM Corporation, 2017 3 Artem Barger (bartem@il.ibm.com)



Blockchain

DOES HE UNDERSTAND
WHAT HE SAID OR
IS IT SOMETHING
HE SAW IN A TRADE
MAGALINE AD?

I THINK WE SHOULD
BUILD A BLOCKCHAIN

E-mail: SCOTTADAMS=A0L.COM

“(ll-':? £ 1995 United Feature Syndicate. Inc.(NYC)

¢

HAT COLOR DO YOU WAN
THAT BLOCKCHAINT

'

I THINK
MAUVE HAS




What is blockchain?



Blockchain: A shared distributed ledger allowing participants in a
business network to work with one system of record

Party D’s Party A’s

records o rB:cnokrds
Shared, replicated, strong consistency
, Auditor
Party C’s Party B's records
records records

Provenance, global truth, no single control point

© IBM Corporation, 2017 6 Artem Barger (bartem@il.ibom.com)



Blockchain

* Introduced in 2008 [Bitcoin08]

* Decentralized networks to decide on the order in which network
transactions are validated & append to a system wide ledge! _ s,
* Decentralized: network controlled by independent entities i~
* Transactions: messages announced across the network
* Validity: following specified set of rules

& ETHEREUM

elripple

XRP






A state machine

* Define a functionality F
v/ Operation op transforms a state s to new state s’ and generates response r

F(s,op) — (s/,r)

* Validation
v/ Operation has to be valid according to a predicate P

op

s Pls,op) =TRUE /s

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)



Blockchain state machine
* Append-only log

v/ Every operation op appends a "block” of valid transactions to the log

* Log content is verifiable from the most recent element

* Log entries form a hash chain:
hn “ Hash([txl, tx,,... | hn

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)



Distributed peer-to-peer protocol to create a ledger

Nodes produce new transaction

- -

Nodes run a protocol to
construct the ledger

© IBM Corporation, 2017 11 Artem Barger (bartem@il.ibom.com)



Blockchain protocol features

*Only” ” operations (transactions) are “executed”

* Primitive transactions such as in Bitcoin

v/ Statement of ownership for crypto coins:
“X'amount of belongs to Y” signed by Z

 More complex transactions (AKA smart contracts == arbitrary code)

v/ Encapsulate business logic that responds to events (on blockchain) and may produce response by
for example transferring asset

v/ Auction, elections, trading, investment decision, supply chains, etc...

© IBM Corporation, 2017 12 Artem Barger (bartem@il.ibm.com)



Blockchain security

* Transactional privacy
v/ Anonymity or pseudonymity through cryptographic tools

e Smart contracts privacy

v/ Distributed secure computations on encrypted data
* ZKP, Homomorphic encryption

* Accountability & non-repudaiation

e Auditability & transperancy
v/ Hash chain

© IBM Corporation, 2017 13 Artem Barger (bartem@il.ibm.com)






Nakamoto consensus - Bitcoin

* Nodes prepare blocks

v/ List of transactions (tx)
v/ All transactions valid Satoshi Nakamoto

satoshin{@gmx.com
www.bitcoin.org

Bitcoin: A Peer-to-Peer Electronic Cash System

Abstract. A purely peer-to-peer version of electronic cash would allow online

® I_Otte ry ra Ce payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main

/ SOlve ha rd Crypto pUZZIG benefits are lost if a trusted third party is still required to prevent double-spending.

. . We propose a solution to the double-spending problem using a peer-to-peer network.

/ Se|ECt dahn a rb'tra ry winner The network timestamps transactions by hashing them into an ongoing chain of

. . hash-based proof-of-work, forming a record that cannot be changed without redoing

/ W|nner bIOCk app“ed tO the IEdger the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest

roof-of-work chain as of of what happened while they were gone.
* All nodes and new P pro PP I WERED

block 1. Introduction

‘/ Lon gest hash Ch ain wins Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most _fransactions, it still suffers from the inherent weaknesses of the trust based model.

© IBM Corporation, 2017 15 Artem Barger (bartem@il.ibm.com)



Bitcoin transactions (UTXO)

ARy

© IBM Corporation, 2017 16 Artem Barger (bartem@il.ibom.com)



Decentralized — Nakamoto consensus

(o -
'3‘\ = ==

< |

-
< '

PoW

— Hn \\(\5/

© IBM Corporation, 2017 17 Artem Barger (bartem@il.ibom.com)




Decentralized = permissionless

* Resilient to censorship and suppression
v/ No central entity

* Nakamoto consensus — proof-of-work (PoW)
v/ Once CPU, one vote
v Majority of hashing power could control the network
v/ Mining, gives incentive to participate

* Protocol features
v/ Stability is a tradeoff between dissemination of new block and mining rate
v/ Decisions are not final (have to wait for 6 new blocks before confirming tx)

© IBM Corporation, 2017 18 Artem Barger (bartem@il.ibm.com)



Consortium consensus (BFT, Hyperledger)

Y,

-

. i -
* Designed set of homogeneous g
validator nodes
* Byzantine agreement
* Generalized quorums
* Tx sent to consensus nodes
* Consensus validates, decides
. . \ )y
and disseminates results )

© IBM Corporation, 2017 19 Artem Barger (bartem@il.ibom.com)



Consortium consensus = permissioned

* Central entity controls group membership
v/ Dynamic membership changes in protocol
v' Membership may be decided inline, by protocol itself

* Features
v/ BFT and consensus are very-well understood problem
v/ Many systems already provide crash tolerant consensus (Chubby, ZK, etcd)
v/ Requires n*2 communication (might work for 1—100 nodes, fails for 1000)

* Revival of research in BFT protocols
v/ Focus on scalability and communication efficiency

© IBM Corporation, 2017 20 Artem Barger (bartem@il.ibm.com)



Permissioned vs Permissionless blockchains

Permissionless

Don’t trust anyone!
* Required PoW => Slow!
* Miners maintains the network
* |f more than 51% controlled by one group the
entire network might be hacked
* On-chain assets
e Censorship resistant

~

)

© IBM Corporation, 2017

21

Permissioned

Trust everyone!
* Faster, only requires validation for
agreement
Need central administrator to control network
entities
Off-chain assets
Better irreversibility and control

~

/

Artem Barger (bartem@il.ibm.com)



Scalability-performance tradeoff

* PoW offers good scalability
with very poor performance

* BFT offers good performance
for small number of replicas

© IBM Corporation, 2017

A

>10k txfs
network latency

performance

<100 tx/s
high latency

22

The Quest for Scalable Blockchain Fabric:
Proof-of-Work vs. BFT Replication

Marko Vukolié

IBM Resear ch - Zurich

mvul@zurich.ibm.com

3 XFT  parallel BFT

Bﬁ'ﬂnuar& '
B | H
oo optimistic BFT

L
e o

Hybrid BFT:

Inclusive blockechain
Randomized BFT . (blockDAG)
‘Bitcoin-NG
Stellar:
e ICHORTRGN

: Standard PoW
¢ protocols (e.g., Bitcoin)

<20 nodes >1000 nodes

node scalability



What is the

HYPERLEDGER PROJECT?

Global collaboration
including leaders in
The Linux finance, banking, IoT,

Open source

blockchain
technologies.

Foundation supply chain,
manufacturing and
technology

© IBM Corporation, 2017 23 Artem Barger (bartem@il.ibom.com)



Hyperledger Project Members

Premier
accenture @) AIRBUS  GCMEGroup .~ |uie= Genel‘al

High performance. Delivered. Qrenanio {]asns, @aworos :‘INZQOI @tﬁ@ﬂx@ JM ' Go M_ m EXCHANGE Eggll\{l‘(ﬁtz N S E w.:‘ch
b . 5 'B mpblod© ) siockstream H ~
{9 DTCC £ HITACHI & voliok b ITSE BLOCKCHAIN e bloq @ NETKI NOKIA [GEIEERY NTTDaTa C_)_I'I_Chdln " Bz
ko Nt oillidlpmedmen i FU]]TSU Inspire the Next ) .
g [l e parisas ;};‘JY — E& Broadridge (ﬁ) bubi&t Ca'ﬂStOﬂE.fE H H W .
technologies O PAXOS 0\ PDX q redhat leblt @ SANY
@ Y - A l " SAMSUNG SDS
— & . L] ' ' cleudsoft LS &7 coinplug Q) consensys
] & . cclu - | %
EEEE ('“'-'e!) e R e " osm anas O o O osay
Ju » ££BRA (637907 FEm
© CREDITS o P o mcTom U e o
- - SESORAMITSU  STATE'S Q symbiont (%)
; —- TATE STREET -
B =M e, 170 guardtime = 33 ggﬁ Iy L g@ HWD;S/DV i = RS swisscom WS
WANDHA FFAN TECHNOLOGY ' e HUAWEI
— — . . . - tequa l?“C"F.E.E“.' THOMSON RELTERS “—IIE'LLE
ﬁﬁﬁﬁ ﬁ INTUIT ©uenw IRCOTECH ksp™ i Aequagcreek Tw& w vmware FARGO

intellect

>koscom twoeorr LLLibra A Lykke - vinac, @58 semen I REM @

CHAMBER OF

Associai'e EE_T"I'”L CS;. @“;"f}.f.‘%}f‘_ N # sovrin f_l

© IBM Corporation, 2017 24 Artem Barger (bartem@il.ibom.com)



Blockchain key actors and their domains

L Smart
Blockchain Application Contract Ledger W
Developer —
f(abc);
=

Blockchain
Operator

Systems
[T aditio ID ta Events & Integration W
Consensus Security W
)

25



How applications interact with the ledger

_ devel Client
BlOCkCha|n eve OpS Apphca’“on
developer
\_ SDK
submits
develops
Contract [~~"~"~°- ’@
/4 accesses
‘get’, ‘put’, ‘delete’ recorded
Ledger L
A — v T
nEE/ T N\
txn _ txn _ txn
\_/‘-
World state Blockchain

o

26



Integrating with existing systems — possibilities

2. Blockchain

events 1. System

events

-
4 \\
3. Call into Blockchain network
-

from existing systems

H—

Blockchain network

e

T
=

Existing
systems

Existing
systems

27



Working with the ledger:

Example of a change of ownership transaction

Application <\

L]
v =

Smart
Contract

f(abc);

txn : txn _ \tin/m
A ‘
\

World state !
“Invoke, myContract,

setOwner, myCar, Matt”

Transaction input - sent from application

invoke (myContract, setOwner,
myCar, Matt)

Smart contract implementation

setOwner (Car, newOwner) {
set Car.owner = newOwner

}

World state: new contents

myCar.vin = 1234
myCar.owner = Matt
myCar .make = Audi

28



Architecture of Hyperledger Fabric v0.6

membership

ECA, TCA, TLS-CA

eer
SDK ’

transact Consensus
Ledger
Events
Chaincode

state

keys

© IBM Corporation, 2017 29 Artem Barger (bartem@il.ibm.com)



Overview of Hyperledger Fabric v1 — Lessons Learned

* Better reflect business processes by specifying who endorses transactions
e Support broader regulatory requirements for privacy and confidentiality

* Scale the number of participants and transaction throughput

* Eliminate non deterministic transactions

* Support rich data queries of the ledger

* Dynamically upgrade fabric and chaincode

e Support for multiple credential and cryptographic services for identity

e Support for “bring your own identity”

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)



Endorsement, Ordering and Validation



Nodes and roles

Committing Peer: Maintains ledger and state. Commits transactions. May hold
smart contract (chaincode).

Endorsing Peer: Specialized committing peer that receives a transaction
proposal for endorsement, responds granting or denying endorsement. Must
hold smart contract

Ordering Nodes (service): Approves the inclusion of transaction blocks into
the ledger and communicates with committing and endorsing peer nodes.
Does not hold smart contract. Does not hold ledger.

32



‘Execute
Clhammde

|
- Committing
Peer

P ] | Order /
roposal !
. Transaction
Response / I J
1 ﬁransactian ] I ? Validate

W EEENE
. .

.___,
= mm

Proposal \ Tra nsactmn
VAR ’
I

|
A
- Committing
Q— Cunsensus O “ -
] I |

Submit
Transaction ] I \ ! /’ \ I -
I — I Ledger
. Commit >
| |
Endorse ) - Committing
: ; Peer

CcC

- s L e
 EEEN

d
B
e
r

© IBM Corporation, 2017 33 Artem Barger (bartem@il.ibm.com)



Sample transaction: Step 1/7 — Propose transaction

Application proposes transaction

Endorsement policy:
*“E, E, and E, must sign”

. (P3, P4 are not part of the policy)

Client
Application

Key:

Client application submits a transaction
proposal for Smart Contract A. It must
target the required peers {E, E., E_}

Endorser

Ordering-Service Committing Peer

Fabric Ordering Node

Smart Contract
(Chain code)

Ledger

Application

Endorsement

Policy
34




Sample transaction: Step 2/7 — Execute proposal

Endorsers Execute Proposals

E,, E, & E, will each execute the
proposed transaction. None of these
executions will update the ledger

Each execution will capture the set of
Read and Written data, called RW sets,
which will now flow in the fabric.

Client
Application

Transactions can be signed & encrypted

Key:
Endorser . . . Ledger
Ordering-Service Committing Peer Application

Fabric Ordering Node .
Smart Contract Endorsement
(Chaincode) | [~ - ’ Policy

35




Sample transaction: Step 3/7 — Proposal Response

Application receives responses

application

Client
Application

Key:

RW sets are asynchronously returned to

The RW sets are signed by each
endorser, and also includes each record
version number

(This information will be checked much
later in the consensus process)

Endorser

Ordering-Service Committing Peer

Fabric Ordering Node

Smart Contract
(Chain code)

BB edger

)

Application

Endorsement

Policy
36




Sample transaction: Step 4/7 — Order Transaction

Application submits responses for ordering

m Application submits responses as a
transaction to be ordered.

Ordering happens across the fabric in
parallel with transactions submitted by
other applications

Client
Application

Key:
Endorser B Ledger
Ordering-Service Committing Peer Application
A
I A
. bl A
Fabric [ T B Ordering Node
1 1 1
(other applications)
Smart Contract | | | Endorsement
(Chain code) Policy
37




Sample transaction: Step 5/7 — Deliver Transaction

Orderer delivers to all committing peers

Ordering service collects transactions
into proposed blocks for distribution to
committing peers. Peers can deliver to
other peers in a hierarchy (not shown)

Client

Application Different ordering algorithms available:

*SOLO (Single node, development)
« Kafka (Crash fault tolerance)
* SBFT (Byzantine fault tolerance)

Key:
Endorser B Ledger
Ordering-Service Committing Peer Application

Fabric Ordering Node .

Smart Contract | | | Endorsement
(Chain code) Policy
3R




Sample transaction: Step 6/7 — Validate Transaction

Client
Application

Ordering-Service

Fabric

Committing peers validate transactions

Every committing peer validates against
the endorsement policy. Also check RW
sets are still valid for current world state

Validated transactions are applied to the
world state and retained on the ledger

Invalid transactions are also retained on

the ledger but do not update world state
Key:

Endorser B Ledger

Committing Peer Application

Ordering Node .

Smart Contract | | | Endorsement
(Chain code) Policy

39




Sample transaction: Step 7/7 — Notify Transaction

Client
Application

Ordering-Service

Fabric

Committing peers notify applications

Applications can register to be notified
when transactions succeed or fail, and
when blocks are added to the ledger

Applications will be notified by each peer
to which they are connected

Key:
Endorser B Ledger
Committing Peer Application

Ordering Node .

Smart Contract | | | Endorsement
(Chain code) Policy

40




Ordering Service

The ordering service packages transactions into blocks to be delivered to
peers. Communication with the service is via channels.

Different configuration options for the ordering service include:
-SOLO
 Single node for development
— Kafka : Crash fault tolerant consensus
* 3:n nodes minimum
* Odd number of nodes recommended

Ordering-Service —SBFT : Byzantine fault tolerant consensus
*4:n nodes minimum

41



Channels

42



Channels

Separate channels isolate transactions on different ledgers

— Chaincode is installed on peers that need to execute
business logic and participate in endorsement process

— Chaincode is instantiated on specific channels for specific
peers

— Ledgers exist in the scope of a channel
 Ledgers can be shared across an entire network of peers

 Ledgers can be included only on a specific set of participants
— Peers can participate in multiple channels
— Concurrent execution for performance and scalability

Ordering-Service

43



Single Channel Endorsement

» All peers connect to the same
channel (blue)

« All peers consider the same
chaincodes for execution and

Client
Application

 Endorsement by peers EO’ E1’ E,
and E,

Key:

GA . Ordering-Service

Endorser B Ledger

[ E
e maintain the same ledger
‘E\
mmm U

Committing Peer Application

Ordering Node .

Smart Contract | | | Endorsement
(Chain code) Policy

44

Fabric




Multi Channel & Chaincode Endorsement

« Peers E0 and E3 connect to the red
channel for chaincodes Y and Z

-—l « Peers E, and E, connect to the blue

A channel for chaincodes A and B
Y

EHE-E
E
p
SD Key:
K E d
1 : :
A | Orderlng-Serwce Endorser B Ledger

g | z

Client
Application

Client
Application

Committing Peer Application

Fabric
Ordering Node .

Smart Contract | | | Endorsement
(Chain code) Policy
A5




Identity Management

46



Membership Services Overview

Certificate
Authority

v EA

Ecert

Tcert

Enroliment certificates
(Ecerts) and Transaction
certificates (Tcerts) can only
be linked by CA and user

A

Membership
Services
Provider API

Blockchain
User A

- Enroll
- Requests certificates
1xEcert, NxTcert Client

Application

invokes SC txn
(signed with TkeyA)

<€

Blockchain
1 UserB

| 8
uses

Client
Application

SDK

invokes SC txn
(signed with EkeyB)

Fabric

47



Membership Services Provider API

Peer /
Client/
Orderer

-

Membership \

Services
Provider API

Fabric-CA

Certificate Authority
(clients)

‘ G

External
Certificate Authority
(clients, peers,
orderers)

Pluggable interface supporting a range of
credential architectures

Governs identity for Peers, Users, and
Orderers.

Provides:
» Concrete identity format
» User credential validation
« User credential revocation
« Signature generation and verification
* (Optional) credential issuance

48



Fabric-ca: New User Registration and Enroliment

Operator

‘ Client | B
Applilsantion \‘

SDK J

returns( secret)

|
|
|
|
[
|
|
Y

1. Register(Enroll ID)

/ E

3. Enroll(Enroll ID, secret)

<

Fabric-CA

returns Ecert

4. Generate_tcerts(count, attr)

returns Tcerts

\

Client
Application

Blockchain

User

8

(o]

wallet

Ecert

14

Tcert ]

Admin registers new
user with Enroll ID

User enrolls and
receives credentials

User requests Tcerts in
batches

Additional offline
registration and
enrollment options
available

49



Fabric-CA Details

_—— = =g

Membership
Services
Provider API

/

Ecert

R

Tcert

~
— i

Fabric-CA

./

cluster DB

Y
HSM

Authenticate Enroll
ID, secret

Default implementation of the
Membership Services Provider Interface
to cover identity management

Issues Ecerts (long-term identity) and
Tcerts (disposable certificate)

Supports clustering for HA
characteristics

Supports LDAP for user authentication

Supports HSM

50



Transaction and Identity Privacy

* Enrollment Certificates, Ecerts
* Long term identity
* Can be obtained offline, bring-your-own-identity

* [Transaction Certificates, Tcerts]
* Disposable certificates, typically used once, requested from Transaction CA
* Tcert derived from long term identity - Enroliment Certificate, Ecert
* Only Transaction CA can link Ecert and Tcert

* Permissioned Interactions
* Users sign with either Ecerts or Tcerts

* Membership Services
* Abstract layer to credential providers



Application Level Encryption

Blockchain
User

Client
Applicati

Encrypt tx input

on

wallet

\_ SDK

SDK signs with Tcert or Ecert

l

-

Chaincode
Decrypt tx input

Encrypt world-state data 7

~

block
World state tx
encrypted data s
Blockchain

@er

7

Peer

Handled in the application domain.

Multiple options for encrypting:
 Transaction Data
 Chaincode*

World-State data

Chaincode optionally deployed with
cryptographic material, or receive it in
the transaction from the client
application using the fransient data
field (not stored on the ledger).

*Encryption of application chaincode

requires additional development of
system chaincode.

52



QUESTIONS?
«>» ROCKET.CHAT

— chat.hyperledger.orgJ
N




Thank youl!

oL 1 e
L a0a8s 5560



