
Hyperledger Fabric
the architecture of the permissioned ledger

Artem Barger

(bartem@il.ibm.com)

1

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

About me…
• IBM Haifa Lab Cloud Foundation Research
• 10+ years of experience in design and development of distributed system
• Maintainer of Linux Foundation Hyperledger Project
• Decent background in Java server side devlopment
• ASF Committer (Apache Commons)

2

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Outline
• Blockchain
✓ Basic concepts
✓ Permissionless (Bitcoint, Etherium) vs Permissioned (Hyperledger)

• Hyperledger
✓ Previous architecture
✓ Driving towards more scalable and secure architecture
✓ Better privacy
✓ Identity Management

• QA

3

Blockchain

4

What is blockchain?

5

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Blockchain: A shared distributed ledger allowing participants in a
business network to work with one system of record

Party C’s
records

Auditor
recordsParty B’s

records

Party D’s
records Bank

records

Party A’s
records

Shared, replicated, strong consistency

Provenance, global truth, no single control point
6

Blockchain

• Introduced in 2008 [Bitcoin08]

• Decentralized networks to decide on the order in which network
transactions are validated & append to a system wide ledger

• Decentralized: network controlled by independent entities
• Transactions: messages announced across the network
• Validity: following specified set of rules

7

8

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

A state machine
• Define a functionality F
✓ Operation op transforms a state s to new state s’ and generates response r

• Validation
✓ Operation has to be valid according to a predicate P

F(s,op) → (s’,r)
op

s s’,r

P(s,op) = TRUE

op

s s’,r
9

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Blockchain state machine
• Append-only log
✓ Every operation op appends a ”block” of valid transactions to the log

• Log content is verifiable from the most recent element

• Log entries form a hash chain:
h

n
 ← Hash([tx

1
, tx

2
,…,] || h

n-1
 || n)

op

s s’,r

H
n

H
n+1

H
n+2H

n-1

10

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Distributed peer-to-peer protocol to create a ledger

Nodes produce new transaction

op1 op2 op3

H
1

H
2

H
3

Nodes run a protocol to
construct the ledger

11

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Blockchain protocol features
• Only ”valid” operations (transactions) are “executed”

• Primitive transactions such as in Bitcoin
✓ Statement of ownership for crypto coins:

“X amount of bitcoins belongs to Y” signed by Z

• More complex transactions (AKA smart contracts == arbitrary code)
✓ Encapsulate business logic that responds to events (on blockchain) and may produce response by

for example transferring asset

✓ Auction, elections, trading, investment decision, supply chains, etc…

12

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Blockchain security
• Transactional privacy
✓ Anonymity or pseudonymity through cryptographic tools

• Smart contracts privacy
✓ Distributed secure computations on encrypted data

• ZKP, Homomorphic encryption

• Accountability & non-repudaiation

• Auditability & transperancy
✓ Hash chain

13

14

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Nakamoto consensus - Bitcoin
• Nodes prepare blocks
✓ List of transactions (tx)
✓ All transactions valid

• Lottery race
✓ Solve hard crypto puzzle
✓ Select an arbitrary winner
✓ Winner block applied to the ledger

• All nodes verify and validate new
block
✓ Longest hash chain wins

15

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Bitcoin transactions (UTXO)

16

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Decentralized – Nakamoto consensus

op1 op2 op3

H
n-2

H
n-1

H
nH

1

PoW

17

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Decentralized = permissionless
• Resilient to censorship and suppression
✓ No central entity

• Nakamoto consensus → proof-of-work (PoW)
✓ Once CPU, one vote
✓ Majority of hashing power could control the network
✓ Mining, gives incentive to participate

• Protocol features
✓ Stability is a tradeoff between dissemination of new block and mining rate
✓ Decisions are not final (have to wait for 6 new blocks before confirming tx)

18

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Consortium consensus (BFT, Hyperledger)
• Designed set of homogeneous

validator nodes

• Byzantine agreement
• Generalized quorums

• Tx sent to consensus nodes

• Consensus validates, decides
and disseminates results

H
n-2

H
n-1

H
nH

1

19

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Consortium consensus = permissioned
• Central entity controls group membership
✓ Dynamic membership changes in protocol
✓ Membership may be decided inline, by protocol itself

• Features
✓ BFT and consensus are very-well understood problem
✓ Many systems already provide crash tolerant consensus (Chubby, ZK, etcd)
✓ Requires n^2 communication (might work for 1—100 nodes, fails for 1000)

• Revival of research in BFT protocols
✓ Focus on scalability and communication efficiency

20

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Permissioned vs Permissionless blockchains

• Don’t trust anyone!
• Required PoW => Slow!

• Miners maintains the network
• If more than 51% controlled by one group the

entire network might be hacked
• On-chain assets
• Censorship resistant • Trust everyone!

• Faster, only requires validation for
agreement

• Need central administrator to control network
entities

• Off-chain assets
• Better irreversibility and control

Permissioned

Permissionless

21

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Scalability-performance tradeoff

• PoW offers good scalability
with very poor performance

• BFT offers good performance
for small number of replicas

22

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

What is the

HYPERLEDGER PROJECT?

Open source collaborative
effort to advance

cross-industry blockchain
technologies.

Hosted by The Linux
Foundation

Global collaboration
including leaders in

finance, banking, IoT,
supply chain,

manufacturing and
technology

23

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Hyperledger Project Members
Premier

General

Associate

24

Blockchain key actors and their domains

25

Blockchain
Developer

D

Blockchain
Operator

O

Peers Consensus

✓

Security

Systems
IntegrationEvents

!

Ledger

…

Traditional Data
Sources

Traditional
Processing
Platforms

f(abc);

Smart
Contract

Application

Blockchain
developer

Smart
Contract

submits

develops

develops

recorded

How applications interact with the ledger

accesses

event

emits

emits

D

Ledger

‘get’, ‘put’, ‘delete’

Client
Application

SDK

!

!

World state

block

txn txn txn

Blockchain
26

Integrating with existing systems – possibilities

Transform

Existing
systems

1. System
events

2. Blockchain
events

4. Call out to existing systems

27

3. Call into Blockchain network
from existing systems

Blockchain network Existing
systems

!
!

Working with the ledger:
Example of a change of ownership transaction

28

World state

Transaction input - sent from application

invoke(myContract, setOwner,
 myCar, Matt)
…

myCar.vin = 1234
myCar.owner = Matt
myCar.make = Audi
…

World state: new contents

Smart contract implementation

setOwner(Car, newOwner) {
 set Car.owner = newOwner
}

txn txn txnmyCar.vin =
1234, ...

“Invoke, myContract,
setOwner, myCar, Matt”

Application

f(abc);

Smart
Contract

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Architecture of Hyperledger Fabric v0.6

keys
Consensus
Ledger
Events
Chaincode

state

transact

enroll

peer
SDK

ECA, TCA, TLS-CA

membership

29

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

• Better reflect business processes by specifying who endorses transactions

• Support broader regulatory requirements for privacy and confidentiality

• Scale the number of participants and transaction throughput

• Eliminate non deterministic transactions

• Support rich data queries of the ledger

• Dynamically upgrade fabric and chaincode

• Support for multiple credential and cryptographic services for identity

• Support for ”bring your own identity”

Overview of Hyperledger Fabric v1 – Lessons Learned

30

Endorsement, Ordering and Validation

31

Nodes and roles

Committing Peer: Maintains ledger and state. Commits transactions. May hold
smart contract (chaincode).

Endorsing Peer: Specialized committing peer that receives a transaction
proposal for endorsement, responds granting or denying endorsement. Must
hold smart contract

Ordering Nodes (service): Approves the inclusion of transaction blocks into
the ledger and communicates with committing and endorsing peer nodes.
Does not hold smart contract. Does not hold ledger.

32

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Hyperledger Fabric

Endorser

CC

Endorser

CC

Transaction
Proposal

1

Execute
Chaincode

2

Proposal
Response

3

Consensus
Submit

Transaction

4

Order
Transaction

5

Committing
Peer

Committing
Peer

Committing
Peer

Validate
Transaction

6

Ledger
Commit

7

L
e
d
g
e

r

L
e
d
g
e
r

L
e
d
g
e
r

33

Sample transaction: Step 1/7 – Propose transaction

E
0

Client
Application E

1

E
2

SD
K

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Fabric

Ordering-Service

O

O O

OA
p

Application proposes transaction

Endorsement policy:
• “E0, E1 and E2 must sign”
• (P3, P4 are not part of the policy)

Client application submits a transaction
proposal for Smart Contract A. It must
target the required peers {E0, E1, E2}

P
4

P
3

A
B

A
B

A
B

A
D

34

Sample transaction: Step 2/7 – Execute proposal

Endorsers Execute Proposals

E0, E1 & E2 will each execute the
proposed transaction. None of these
executions will update the ledger

Each execution will capture the set of
Read and Written data, called RW sets,
which will now flow in the fabric.

Transactions can be signed & encrypted

E
0

Client
Application E

1

E
2

SD
K

Fabric

Ordering-Service

O

O O

OA
p

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

P
4

P
3

A
B

A
B

A
B

A
D

35

Sample transaction: Step 3/7 – Proposal Response

Application receives responses

RW sets are asynchronously returned to
application

The RW sets are signed by each
endorser, and also includes each record
version number

(This information will be checked much
later in the consensus process)

E
0

Client
Application E

1

E
2

SD
K

Fabric

Ordering-Service

O

O O

OA
p

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

P
4

P
3

A
B

A
B

A
B

A
D

36

Sample transaction: Step 4/7 – Order Transaction

Application submits responses for ordering

Application submits responses as a
transaction to be ordered.

Ordering happens across the fabric in
parallel with transactions submitted by
other applications

Fabric

E
0

E
1

E
2

O

O O

OA
p

Client
Application

SD
K

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

(other applications)

Ordering-Service

P
4

P
3

A
B

A
B

A
B

A
D

37

Sample transaction: Step 5/7 – Deliver Transaction

Orderer delivers to all committing peers

Ordering service collects transactions
into proposed blocks for distribution to
committing peers. Peers can deliver to
other peers in a hierarchy (not shown)

Different ordering algorithms available:
• SOLO (Single node, development)
• Kafka (Crash fault tolerance)
• SBFT (Byzantine fault tolerance)

Fabric

E
0

E
1

E
2

O

O O

OA
p

Client
Application

SD
K

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Ordering-Service

P
4

P
3

A
B

A
B

A
B

A
D

*

38

Sample transaction: Step 6/7 – Validate Transaction

Committing peers validate transactions

Every committing peer validates against
the endorsement policy. Also check RW
sets are still valid for current world state

Validated transactions are applied to the
world state and retained on the ledger

Invalid transactions are also retained on
the ledger but do not update world state

Fabric

E
0

E
1

E
2

O

O O

OA
p

Client
Application

SD
K

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Ordering-Service

P
4

P
3

* * *

*

*

A
B

A
B

A
B

A
D

39

Sample transaction: Step 7/7 – Notify Transaction

Committing peers notify applications

Applications can register to be notified
when transactions succeed or fail, and
when blocks are added to the ledger

Applications will be notified by each peer
to which they are connected

Fabric

E
0

A
B

E
1

A
B

E
2

A
B

O

O O

OA
p

Client
Application

SD
K

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Ordering-Service

P
3

A
D

P
4

!

!

!

!

! !

40

Ordering Service

The ordering service packages transactions into blocks to be delivered to
peers. Communication with the service is via channels.

Different configuration options for the ordering service include:
– SOLO

•Single node for development
– Kafka : Crash fault tolerant consensus

•3:n nodes minimum
•Odd number of nodes recommended

– SBFT : Byzantine fault tolerant consensus
• 4:n nodes minimum

Ordering-Service

OO

O O

41

Channels

42

Channels

Separate channels isolate transactions on different ledgers

– Chaincode is installed on peers that need to execute
business logic and participate in endorsement process

– Chaincode is instantiated on specific channels for specific
peers

– Ledgers exist in the scope of a channel
• Ledgers can be shared across an entire network of peers
• Ledgers can be included only on a specific set of participants

– Peers can participate in multiple channels
– Concurrent execution for performance and scalability

OO

O O

E
1

E
0

Ordering-Service

43

Single Channel Endorsement

• All peers connect to the same
channel (blue).

• All peers consider the same
chaincodes for execution and
maintain the same ledger

• Endorsement by peers E0, E1, E2
and E3

Fabric

E
0

A

B

E
3

E
2

E
1

A
B

A
B A

B

OO

O O

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Client
Application

SD
K

A
p

Ordering-Service

44

Multi Channel & Chaincode Endorsement

• Peers E0 and E3 connect to the red
channel for chaincodes Y and Z

• Peers E1 and E2 connect to the blue
channel for chaincodes A and B

Fabric

E
0

Z

Y

E
3

E
2

E
1

A
B

A
B Y

Z

OO

O O

Endorser Ledger

Committing Peer Application

Ordering Node

Smart Contract
(Chain code)

Endorsement
Policy

Key:

Client
Application

SD
K

A
p

Ordering-Service

Client
Application

SD
K

A
p

45

Identity Management

46

- Enroll
- Requests certificates
 1xEcert, NxTcert

Fabric

Blockchain
User A

uses

Ecert

Tcert

invokes SC txn
 (signed with TkeyA)Enrollment certificates

(Ecerts) and Transaction
certificates (Tcerts) can only

be linked by CA and user

Blockchain
User B

Membership Services Overview

U

U

uses

✓

Certificate
Authority

47

Client
Application

SDK
Client

Application

SDK

invokes SC txn
 (signed with EkeyB)

Membership
Services

Provider API

Membership Services Provider API

• Pluggable interface supporting a range of
credential architectures

• Governs identity for Peers, Users, and
Orderers.

• Provides:
• Concrete identity format
• User credential validation
• User credential revocation
• Signature generation and verification
• (Optional) credential issuance

✓

External
Certificate Authority

(clients, peers,
orderers)

Fabric-CA
Certificate Authority

(clients)

✓

Implements

Fa
b

ri
c-

C
A

Ex
te

rn
al

 C
A

Membership
Services

Provider APIPeer /
Client /
Orderer

48

Blockchain
User

Fabric-ca: New User Registration and Enrollment

U

3. Enroll(Enroll ID, secret)

wallet

4. Generate_tcerts(count, attr)

• Admin registers new
user with Enroll ID

• User enrolls and
receives credentials

• User requests Tcerts in
batches

• Additional offline
registration and
enrollment options
available

Client
Application

S
D

K

Operator

O

Client
Application

SDK

1. Register(Enroll ID)

returns(secret)

returns Ecert

returns Tcerts

2. Send Enroll ID and secret

Ecert

Tcert

✓

Fabric-CA

49

Ecert

Tcert

Fabric-CA Details

Fabric-CA

cluster DB

LDAP

Authenticate Enroll
ID, secret

HSM

Root
Certificate Authority

• Default implementation of the
Membership Services Provider Interface
to cover identity management

• Issues Ecerts (long-term identity) and
Tcerts (disposable certificate)

• Supports clustering for HA
characteristics

• Supports LDAP for user authentication

• Supports HSM

✓

Membership
Services

Provider API

Fabric-CA API

50

Transaction and Identity Privacy
• Enrollment Certificates, Ecerts

• Long term identity
• Can be obtained offline, bring-your-own-identity

• [Transaction Certificates, Tcerts]
• Disposable certificates, typically used once, requested from Transaction CA
• Tcert derived from long term identity - Enrollment Certificate, Ecert
• Only Transaction CA can link Ecert and Tcert

• Permissioned Interactions
• Users sign with either Ecerts or Tcerts

• Membership Services
• Abstract layer to credential providers

51

World state

Blockchain

block

…

Application Level Encryption

Ledger

 Encrypt tx input

Client
Application

SDK

Chaincode
Decrypt tx input
Encrypt world-state data

tx
encryptedencrypted data

Blockchain
User

wallet

Peer

Handled in the application domain.

Multiple options for encrypting:
• Transaction Data
• Chaincode*
• World-State data

Chaincode optionally deployed with
cryptographic material, or receive it in
the transaction from the client
application using the transient data
field (not stored on the ledger).

*Encryption of application chaincode
requires additional development of
system chaincode.

tx

SDK signs with Tcert or Ecert

52

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

QUESTIONS?

53

chat.hyperledger.org

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Thank you!

54

