

SCRAM authentication
Heikki Linnakangas / Pivotal

pg_hba.conf

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all trust

Use plaintext authentication from localhost
host all all 127.0.0.1 plain

Allow md5 authentication from example.com, with SSL
hostssl all all .example.com md5

Require SCRAM for everyone else
host all all 0.0.0.0/0 scram-sha-256

PostgreSQL authentication methods

● Password-based:
– password (plaintext)

– crypt

– md5

– scram-sha-256

– RADIUS / LDAP / PAM

● Others:
– SSL certificate

– kerberos

(Plain) Password authentication

Server: Hey, what’s your password?

Client: “Swordfish”

Server: ok, cool

Plain password authentication

● Obviously weak
– Password sniffing

● Ok over SSL
– With sslmode=verify-full

● Used by RADIUS, LDAP, PAM, BSD
authentication methods!

MD5 authentication

Server: Here are 4 random bytes (salt). Please
compute:

md5(md5(password || username), salt)

Client: 23dff85f7c38ee928f0c21ae710bba5d

Server: Ok, cool

MD5 weaknesses

md5(md5(password || username), salt)

● Password guessing
– My laptop can compute about 7 million MD5 hashes per second

● Replay
– Only 4 billion unique 4-byte salts (birthday attack)

● Stolen hashes
– You don’t need the original password to log in. The hash stored

in pg_auth.rolpassword is enough.

Other MD5 issues

● Renaming a user invalidates the password
– Because the hash includes the username

● db_user_namespace cannot be used
– For same reason

● MD5 has a bad reputation

SCRAM to the rescue!

● Salted Challenge Response Authentication
Mechanism

● To be precise, PostgreSQL implements
SCRAM-SHA-256

● Defined by RFC 5802 and RFC 7677
● Challenge-response like MD5 authentication

SCRAM

Client: Hi! Here’s a random nonce:
r=fyko+d2lbbFgONRv9qkxdawL

Server: Hi! Here’s my random nonce, salt and iteration count:
r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
s=QSXCR+Q6sek8bf92,
i=4096

Client: Here’s my proof that I know the password:
<ClientProof>

Server: Ok, cool. And here’s my proof that I knew it too:
<ServerProof>

SCRAM

● More resistant to dictionary attacks
– The computation to guess password is much more

resource intensive

– Configurable iteration count

● Longer nonces defeat replay attacks
● The verifiers stored in
pg_authid.rolpassword don’t allow
impersonating the user

SCRAM-SHA-256

● Relatively simple implementation
– < 1000 lines of code in libpq

● Relies only on SHA-256 hash function

Password verifiers

set password_encryption='md5';
create user md5_user password 'foo';

set password_encryption='scram-sha-256';
create user scram_user password 'foo';

Password verifiers

SCRAM-SHA-256$<salt>:<iteration count>$<hashes>

postgres=# select rolname, rolpassword from pg_authid

 rolname | rolpassword
------------+---
 md5_user | md591334fcda28129398a9cdb3f551e3cc8
 scram_user | SCRAM-SHA-
256$4096:uZngi0eCu0IF6wbG$zMiBqWGTny5EEa1I+38fCT8OcuA0xbGA
alZfHRh/g6g=:8KiMkegRYfcoEXk9+aLJwR1JhMbM4LyDxQE2arrEvRU=

(2 rows)

Compatibility

● ‘md5’ in pg_hba.conf actually means “SCRAM-
SHA-256 or MD5 authentication”

● ‘scram-sha-256’ means SCRAM-SHA-256 only
● Plaintext ‘password’ authentication works with

either kind of hash

Simple Authentication and Security
Layer (SASL)

● “The Simple Authentication and Security Layer
(SASL) is a framework for providing
authentication and data security services in
connection-oriented protocols via replaceable
mechanisms.”

● Decouples authentication from application
protocol (like PostgreSQL’s FE/BE protocol)

● SCRAM is one SASL authentication mechanism

SASL

● Currently, PostgreSQL has a built-in SCRAM-SHA-256
implementation

● Would be straightforward to add more SASL
authentication mechanisms

● Could use an external library to add support for more
(e.g. Cyrus libsasl)

● Client can use a library that implements SASL and
SCRAM-SHA-256
– Java has a very generic SASL implementation, but no built-in

SCRAM-SHA-256 provider

PostgreSQL 10

● SCRAM-SHA-256
● Channel binding not supported
● Username is always passed as empty

Migrating

1.Upgrade all clients

2.Set password_encryption=’scram-sha-256’ in
postgresql.conf

3.Change all user passwords

SCRAM is not encryption!

● SSL is still recommended
– SCRAM is only authentication, not encryption!

Future, short-term

● Implement SCRAM-SHA-256 in all the drivers
– JDBC, ODBC (uses libpq), Python, .Net, Ruby, …

● Add support to middleware
– Pgbouncer, pgpool-II

● Add option to libpq to require SCRAM
● Implement channel binding

Channel binding

● “binds” the SSL session to the authentication
exchange

● Defeats man-in-the-middle attacks
● Makes it unnecessary to have CA certificate in

the client

Channel binding

● Not implemented yet
● Michael Paquier created a patch for

PostgreSQL 11

Future, long-term

● Allow storing SCRAM verifier in LDAP
● Delegation for middleware
● Zero-knowledge proof

– SRP

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

