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pg_hba.conf

# TYPE  DATABASE   USER       ADDRESS           METHOD
# "local" is for Unix domain socket connections only
local   all        all                          trust

# Use plaintext authentication from localhost
host    all        all        127.0.0.1         plain

# Allow md5 authentication from example.com, with SSL
hostssl all        all        .example.com      md5

# Require SCRAM for everyone else
host    all        all        0.0.0.0/0         scram-sha-256



  

PostgreSQL authentication methods

● Password-based:
– password (plaintext)

– crypt

– md5

– scram-sha-256

– RADIUS / LDAP / PAM

● Others:
– SSL certificate

– kerberos



  

(Plain) Password authentication

Server: Hey, what’s your password?

Client: “Swordfish”

Server: ok, cool



  

Plain password authentication

● Obviously weak
– Password sniffing

● Ok over SSL
– With sslmode=verify-full

● Used by RADIUS, LDAP, PAM, BSD 
authentication methods!



  

MD5 authentication

Server: Here are 4 random bytes (salt). Please 
compute:

md5(md5(password || username), salt)

Client: 23dff85f7c38ee928f0c21ae710bba5d

Server: Ok, cool



  

MD5 weaknesses

md5(md5(password || username), salt)

● Password guessing
– My laptop can compute about 7 million MD5 hashes per second

● Replay
– Only 4 billion unique 4-byte salts (birthday attack)

● Stolen hashes
– You don’t need the original password to log in. The hash stored 

in pg_auth.rolpassword is enough.



  

Other MD5 issues

● Renaming a user invalidates the password
– Because the hash includes the username

● db_user_namespace cannot be used
– For same reason

● MD5 has a bad reputation



  

SCRAM to the rescue!

● Salted Challenge Response Authentication 
Mechanism

● To be precise, PostgreSQL implements 
SCRAM-SHA-256

● Defined by RFC 5802 and RFC 7677
● Challenge-response like MD5 authentication



  

SCRAM

Client: Hi! Here’s a random nonce:
r=fyko+d2lbbFgONRv9qkxdawL

Server: Hi! Here’s my random nonce, salt and iteration count:
r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
s=QSXCR+Q6sek8bf92,
i=4096

Client: Here’s my proof that I know the password:
<ClientProof>

Server: Ok, cool. And here’s my proof that I knew it too:
<ServerProof> 



  

SCRAM

● More resistant to dictionary attacks
– The computation to guess password is much more 

resource intensive

– Configurable iteration count

● Longer nonces defeat replay attacks
● The verifiers stored in 
pg_authid.rolpassword don’t allow 
impersonating the user



  

SCRAM-SHA-256

● Relatively simple implementation
– < 1000 lines of code in libpq

● Relies only on SHA-256 hash function



  

Password verifiers

set password_encryption='md5';
create user md5_user password 'foo';

set password_encryption='scram-sha-256';
create user scram_user password 'foo';



  

Password verifiers

SCRAM-SHA-256$<salt>:<iteration count>$<hashes>

postgres=# select rolname, rolpassword from pg_authid

  rolname   |        rolpassword    
------------+---------------------------------------------
 md5_user   | md591334fcda28129398a9cdb3f551e3cc8
 scram_user | SCRAM-SHA-
256$4096:uZngi0eCu0IF6wbG$zMiBqWGTny5EEa1I+38fCT8OcuA0xbGA
alZfHRh/g6g=:8KiMkegRYfcoEXk9+aLJwR1JhMbM4LyDxQE2arrEvRU=

(2 rows)



  

Compatibility

● ‘md5’ in pg_hba.conf actually means “SCRAM-
SHA-256 or MD5 authentication”

● ‘scram-sha-256’ means SCRAM-SHA-256 only
● Plaintext ‘password’ authentication works with 

either kind of hash



  

Simple Authentication and Security 
Layer (SASL)

● “The Simple Authentication and Security Layer 
(SASL) is a framework for providing 
authentication and data security services in 
connection-oriented protocols via replaceable 
mechanisms.”

● Decouples authentication from application 
protocol (like PostgreSQL’s FE/BE protocol)

● SCRAM is one SASL authentication mechanism



  

SASL

● Currently, PostgreSQL has a built-in SCRAM-SHA-256 
implementation

● Would be straightforward to add more SASL 
authentication mechanisms

● Could use an external library to add support for more 
(e.g. Cyrus libsasl)

● Client can use a library that implements SASL and 
SCRAM-SHA-256
– Java has a very generic SASL implementation, but no built-in 

SCRAM-SHA-256 provider



  

PostgreSQL 10

● SCRAM-SHA-256
● Channel binding not supported
● Username is always passed as empty



  

Migrating

1.Upgrade all clients

2.Set password_encryption=’scram-sha-256’ in 
postgresql.conf

3.Change all user passwords



  

SCRAM is not encryption!

● SSL is still recommended
– SCRAM is only authentication, not encryption!



  

Future, short-term

● Implement SCRAM-SHA-256 in all the drivers
– JDBC, ODBC (uses libpq), Python, .Net, Ruby, …

● Add support to middleware
– Pgbouncer, pgpool-II

● Add option to libpq to require SCRAM
● Implement channel binding



  

Channel binding

● “binds” the SSL session to the authentication 
exchange

● Defeats man-in-the-middle attacks
● Makes it unnecessary to have CA certificate in 

the client



  

Channel binding

● Not implemented yet
● Michael Paquier created a patch for 

PostgreSQL 11



  

Future, long-term

● Allow storing SCRAM verifier in LDAP
● Delegation for middleware
● Zero-knowledge proof

– SRP



  

Questions?
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