

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

…
•
•
•
•
•

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

•
✓
❑
❑

•
✓
✓

❑

✓
•
•

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

HYPERLEDGER PROJECT?

Open source collaborative
effort to advance

cross-industry blockchain
technologies.

Hosted by The Linux
Foundation

Global collaboration
including leaders in

finance, banking, IoT,
supply chain,

manufacturing and
technology

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Premier
General

Associate

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

Client
Application

SD
K

Key:

Fabric

Ordering-Service

Application proposes transaction

Endorsement policy:
• “E0, E1 and E2 must sign”
• (P3, P4 are not part of the policy)

Client application submits a transaction
proposal for Smart Contract A. It must
target the required peers {E0, E1, E2}

Endorsers Execute Proposals

E0, E1 & E2 will each execute the
proposed transaction. None of these
executions will update the ledger

Each execution will capture the set of
Read and Written data, called RW sets,
which will now flow in the fabric.

Transactions can be signed & encrypted

Client
Application

SD
K

Fabric

Ordering-Service

Key:

Application receives responses

RW sets are asynchronously returned to
application

The RW sets are signed by each
endorser, and also includes each record
version number

(This information will be checked much
later in the consensus process)

Client
Application

SD
K

Fabric

Ordering-Service

Key:

Application submits responses for ordering

Application submits responses as a
transaction to be ordered.

Ordering happens across the fabric in
parallel with transactions submitted by
other applications

Fabric

Client
Application

SD
K

Key:

(other applications)

Ordering-Service

Orderer delivers to all committing peers

Ordering service collects transactions
into proposed blocks for distribution to
committing peers. Peers can deliver to
other peers in a hierarchy (not shown)

Different ordering algorithms available:
• SOLO (Single node, development)
• Kafka (Crash fault tolerance)
• SBFT (Byzantine fault tolerance)

Fabric

Client
Application

SD
K

Key:

Ordering-Service

*

Committing peers validate transactions

Every committing peer validates against
the endorsement policy. Also check RW
sets are still valid for current world state

Validated transactions are applied to the
world state and retained on the ledger

Invalid transactions are also retained on
the ledger but do not update world state

Fabric

Client
Application

SD
K

Key:

Ordering-Service

* * *

*

*

Committing peers notify applications

Applications can register to be notified
when transactions succeed or fail, and
when blocks are added to the ledger

Applications will be notified by each peer
to which they are connected

Fabric

Client
Application

SD
K

Key:

Ordering-Service

!

!

!

!

! !

– Chaincode is installed on peers that need to execute
business logic and participate in endorsement process

– Chaincode is instantiated on specific channels for specific
peers

– Ledgers exist in the scope of a channel
• Ledgers can be shared across an entire network of peers
• Ledgers can be included only on a specific set of participants

– Peers can participate in multiple channels
– Concurrent execution for performance and scalability

Ordering-Service

• All peers connect to the same
channel (blue).

• All peers consider the same
chaincodes for execution and
maintain the same ledger

• Endorsement by peers E0, E1, E2
and E3

Fabric

Key:

Client
Application

SD
K

Ordering-Service

• Peers E0 and E3 connect to the red
channel for chaincodes Y and Z

• Peers E1 and E2 connect to the blue
channel for chaincodes A and B

Fabric

Key:

Client
Application

SD
K

Ordering-Service

Client
Application

SD
K

•
$ docker-compose [-f orderer.yml] ...

•
$ peer node start ...

•
$ peer chaincode install ...

•
$ peer channel create –o [orderer] ...

•
$ peer channel join ...

•
$ peer channel instantiate ... –P ‘policy’

•
•

peer chaincode instantiate -C testchainid -n mycc \
-p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 \
-c '{"Args":["init","a","100","b","200"]}' \
-P "AND('Org1.member', 'Org2.member')“

❑

❑
❑

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

© IBM Corporation, 2017 Artem Barger (bartem@il.ibm.com)

