Hyperledger Fabric

Hands on session — the guide on how to write
your own chaincode

Artem Barger
(bartem@il.ibm.com)

About me...

* IBM Haifa Lab Cloud Foundation Research
* 10+ years of experience in design and development of distributed system
* Maintainer of Linux Foundation Hyperledger Project
* Decent background in Java server side devlopment
* ASF Committer (Apache Commons) @ —
ey Wl S e i

o ¢ ¢ ipasind deva Brogmmmer SolwareBng TN 341 70
4o o
A U4

23,110 reputaion

8 a9 * 55

© IBM Corporation, 2017 2 Artem Barger (bartem@il.ibm.com)

Outline

* Hyperledger Fabric
v/ Basic concepts
(d Endorsement, ordering, validation
A Channels
* Setting Up a Fabric Network
v/ Create/Join a channel

v Writing/Installing/Instantiating a chaincode
Jd Endorsement policies

v Invoke transactions

* Demo

OQA

© IBM Corporation, 2017 3 Artem Barger (bartem@il.ibm.com)

What is the

HYPERLEDGER PROJECT?

Global collaboration
including leaders in
The Linux finance, banking, IoT,

Open source

blockchain
technologies.

Foundation supply chain,
manufacturing and
technology

© IBM Corporation, 2017 4 Artem Barger (bartem@il.ibm.com)

Hyperledger Project Members

Premier

>
accenture @, AIRBUS
High performance. Delivered.
Vo4
X2 DTCC
Digital Asset it

®
:

i
H
.
iz
:

© IBM Corporation, 2017

CME Group

(o0
FUJITSU

JPMorgan

Ueneral

’_’_/lg:gaspcuz BORSE

“ ABN-AMRD X] AESTUETE N AUTOROS

 oouse biToe B

HiITacH ¥ oo ©

Inspire the Next
-
[l e parisas L OU— E& Broadridge
@ bl gen CLSS

Cisco

R

® CREDITS
®e, "0 guardtime =
ETST - -
Fyperchan 1 et INTUIT
skoseom e Lk Libra

Associate

337 Hume

URPHY &
cGONIGLE
A T et

Dehastratng | 5/

NEC

(o mss JM ' Go

| Blockstream bloq a NETKI

Calastone "

MOSCOW
EXCHANGE

NSE

NTTDaTa c_)_n_chqin &;ﬁ@ﬁﬁ

Giokal IT Incrancr

norbloc

NOKIA

D bubi® it aiasy
technologis $Opaxos [oIHE @ rednar RILLIE - w2 A saNY’
l : SAMSUNG SDS
’_'7 coinplug C@ u Q) consensys — -
. M <l D A2
. 9 @ SBERBANK pr=fopronbben (y & #gﬂ?ﬁ] C)) Skry
e -'[ﬁ/ FACTOM U NEXGo e
" Sen 7T Q . k. A
~\ SBSORAMITSU STATE STREET symbiont (X |
jHasHED g@ HINDSIN o swisscom wA
HUAWEI J
o : st __F_eﬁﬁ;-é;-;g-. — Tw{ w vmware B
_k. Lykke Mitissn Pestners M |$CL 6 E, % §i}@. -'Tglﬂﬁj’ﬁi?} 8 Iigﬂ%ﬁil

N, CHamBER OF

' DIGITAL q " : | toiidastisal

:l:_L‘._I:I:.'IMEHEE CSI: se @ch‘ll’ﬂlﬂ 3\ ::-__; SOVrin I I
- - ihance Foundatinm MXT FOLMDATION it

Artem Barger (bartem@il.ibm.com)

Endorsement, Ordering and Validation

Nodes and roles

Committing Peer: Maintains ledger and state. Commits transactions. May hold
smart contract (chaincode).

Endorsing Peer: Specialized committing peer that receives a transaction
proposal for endorsement, responds granting or denying endorsement. Must
hold smart contract

Ordering Nodes (service): Approves the inclusion of transaction blocks into
the ledger and communicates with committing and endorsing peer nodes.
Does not hold smart contract. Does not hold ledger.

Execute
Chaincode

Committing
Peer

2 HEER
4 .

= mm

- p] Order |
roposal !
/ Transaction
Response y
- .
1 . ransaction] I Validate
/
Committing

O Proposal / Transaction
Peer |

- 4
Submit | / v |
Transaction] \ I /’ v / -
___ Ledger
Commit

Committing
Peer _

n

. e
d
B
e
r

| \
O ’
o ”
35
L
D
4 : ¥
1y LS
=
L
@I’

= mm o

Endorse

CcC

© IBM Corporation, 2017 8 Artem Barger (bartem@il.ibm.com)

Sample transaction: Step 1/7 — Propose transaction

Application proposes transaction

Endorsement policy:
- “‘E, E, and E, must sign”
. (P3’, P4 are not part of the policy)

Client
Application

Key:

Client application submits a transaction
proposal for Smart Contract A. It must
target the required peers {E, E., E_}

Endorser

Ordering-Service Committing Peer

Fabric Ordering Node

Smart Contract
(Chain code)

Ledger

Application

Endorsement
Policy
q

Sample transaction: Step 2/7 — Execute proposal

Endorsers Execute Proposals

E,, E, & E, will each execute the
proposed transaction. None of these
executions will update the ledger

Each execution will capture the set of
Read and Written data, called RW sets,
which will now flow in the fabric.

Client
Application

Transactions can be signed & encrypted

Key:
Endorser Ledger
- &
Ordering-Service Committing Peer Application

Fabric Ordering Node .
Smart Contract Endorsement
(Chaincode) | [~ - Policy

10

Sample transaction: Step 3/7 — Proposal Response

Application receives responses

application

Client
Application

Key:

RW sets are asynchronously returned to

The RW sets are signed by each
endorser, and also includes each record
version number

(This information will be checked much
later in the consensus process)

Endorser

Ordering-Service Committing Peer

Fabric Ordering Node

Smart Contract
(Chain code)

B edger

)

Application

Endorsement

Policy
11

Sample transaction: Step 4/7 — Order Transaction

Application submits responses for ordering

m Application submits responses as a
transaction to be ordered.

Ordering happens across the fabric in
parallel with transactions submitted by
other applications

Client
Application

Key:
Endorser B Ledger
Ordering-Service Committing Peer Application
A
I A
. bl A
Fabric [T B Ordering Node
[I
(other applications)
Smart Contract | | Endorsement
(Chain code) Policy
12

Sample transaction: Step 5/7 — Deliver Transaction

Orderer delivers to all committing peers

Ordering service collects transactions
into proposed blocks for distribution to
committing peers. Peers can deliver to
other peers in a hierarchy (not shown)

Client

Application Different ordering algorithms available:

*SOLO (Single node, development)
« Kafka (Crash fault tolerance)
* SBFT (Byzantine fault tolerance)

Key:
Endorser B Ledger
Ordering-Service Committing Peer Application

Fabric Ordering Node .

Smart Contract | | Endorsement
(Chain code) Policy
13

Sample transaction: Step 6/7 — Validate Transaction

Client
Application

Ordering-Service

Fabric

Committing peers validate transactions

Every committing peer validates against
the endorsement policy. Also check RW
sets are still valid for current world state

Validated transactions are applied to the
world state and retained on the ledger

Invalid transactions are also retained on

the ledger but do not update world state
Key:

Endorser B Ledger

Committing Peer Application

Ordering Node .

Smart Contract | | Endorsement
(Chain code) Policy

14

Sample transaction: Step 7/7 — Notify Transaction

Client
Application

Ordering-Service

Fabric

Committing peers notify applications

Applications can register to be notified
when transactions succeed or fail, and
when blocks are added to the ledger

Applications will be notified by each peer
to which they are connected

Key:
Endorser B Ledger
Committing Peer Application

Ordering Node .

Smart Contract | | Endorsement
(Chain code) Policy

15

Channels

16

Channels

Separate channels isolate transactions on different ledgers

— Chaincode is installed on peers that need to execute
business logic and participate in endorsement process

— Chaincode is instantiated on specific channels for specific
peers

— Ledgers exist in the scope of a channel
 Ledgers can be shared across an entire network of peers

 Ledgers can be included only on a specific set of participants
— Peers can participate in multiple channels
— Concurrent execution for performance and scalability

Ordering-Service

17

Single Channel Endorsement

» All peers connect to the same
channel (blue)

« All peers consider the same
chaincodes for execution and

Client
Application

 Endorsement by peers EO’ E1’ E,
and E,

Key:

[E
amm L[maintain the same ledger
‘g\
mmm U

A Ordering-Service Endorser - Ledger

Committing Peer Application

Ordering Node .

Smart Contract | | Endorsement
(Chain code) Policy

18

Fabric

Multi Channel & Chaincode Endorsement

« Peers E0 and E3 connect to the red
channel for chaincodes Y and Z

Client
L K
Application ‘ | E « Peers E1 and E2 connect to the blue
amm L[channel for chaincodes A and B
)
p
Client SD | Key:
Applilc?:tion K 1 E
N Ordering-Service v Endorser - tedger
[HH] B [H] z

Committing Peer Application

Fabric
Ordering Node .

Smart Contract | | Endorsement
(Chain code) Policy
19

Setting Up a Fabric Network

20

Bootstrapping the Network (1/6) — Configure & start Ordering
Service

Ordering-Service

 An Ordering Service is configured and started for other network peers to use
$ docker-compose [-f orderer.yml] ...

Fabric

21

Bootstrapping the Network (2/6) — Configure and Start Peer

Nodes

Ordering-Service

Fabric

* Apeeris configured and started for each Endorser or Committer in the network
$ peer node start ...

22

Bootstrapping the Network (3/4) — Install Chaincode

‘ El | Ordering-Service

* Chaincode is installed onto each Endorsing Peer that needs to execute it
$ peer chaincode install ...

Fabric

23

Bootstrapping the Network (4/6) — Create Channels

‘ El | Ordering-Service

* Channels are created on the ordering service
$ peer channel create -o [orderer] ...

Fabric

24

Bootstrapping the Network (5/6) — Join Channels

|
|
|
EE :
Ordering-Service
A

* Peers that are permissioned can then join the channels they want to transact on
$ peer channel join ...

Fabric

25

Bootstrapping the Network (6/6) — Instantiate Chaincode

B

E Ordering-Service

Fabric

* Peers finally instantiate the Chaincode on the channels they want to transact on

$ peer channel instantiate ... -P ‘policy’
* Once instantiated a Chaincode is live and can process transaction requests

 Endorsement Policy is specified at instantiation time -

Endorsement Policy Example

peer chaincode instantiate -C testchainid -n mycc \
-p github.com/hyperledger/fabric/examples/chaincode/go/chaincode example02 \
-c¢ "{"Args":["init","a","100","b","200"]1}"' \
-P "AND('Orgl.member', 'Org2.member')"“

This command deploys chaincode mycc on chain testchainid with the policy
AND('Orgl.member’, 'Org2.member’).

JAND('Orgl.member’, 'Org2.member’,"' ') - requests 1 signature from each of the three
principals

1 OR('Orgl.member’, 'Org2.member') - requests 1 signature from either one of the two principals

1 OR('Orgl.member', AND('Org2.member'," ")) - requests either one signature from a

member of the Orgl MSP or 1 signature from a member of the Org2 MSP and 1 signature from a
member of the Org3 MSP.

DEMO

COrWin / pgdays @uUnwatchv 1 sStar 0 | YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights ~
No description, website, or topics provided. Edit
Add topics
® 3 commits ¥ 1 branch © Oreleases 22 1 contributor

Branch: master v New pull request Create new file = Upload files = Find file

"a COrWin Adding artifacts: demo crypto material, create channel config - Latest commit 2eed399 2 days ago
app Init PGDays'17 chaincode examples 3 days ago
artifacts Adding artifacts: demo crypto material, create channel config 2 days ago
chaincode Remove system temp files 2 days ago

[2) .gitignore Init PGDays'17 chaincode examples 3 days ago

[E) README.md Init PGDays'17 chaincode examples 3 days ago

README.md

PGDays'17 Hyperledger Fabric Demo

In this repository implemented demo chaincodes with primary goal to demonstrate capabilities of Hyperledger Fabric
chaincode development process to be presented at PGDays'17 conference.

Use case

QUESTIONS?

© IBM Corporation, 2017 29 Artem Barger (bartem@il.ibm.com)

Thank youl!

oL 1 e
L a0a8s 5560

