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Introduction: Query Optimization

SELECT ...
FROM R,S,T
WHERE ...
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I How good are cardinality estimators?
I When do bad estimates lead to slow queries?
I How important is an accurate cost model for the overall query

optimization process?
I (How large does the enumerated plan space need to be?)
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Join Order Benchmark: Data Set

I Internet Movie Data Base data set (imdb.com)
I around 4GB, 21 relations
I information about movies and related facts about actors,

directors, production companies, etc.
I publicly available for non-commercial use
I like all real-world data sets, full of join-crossing correlations



Join Order Benchmark: 113 Queries
SELECT cn.name, mi.info as rating, miidx.info as reldate
FROM company_name cn, company_type ct, info_type it,

info_type it2, title t kind_type kt, movie_info mi,
movie_companies mc, movie_info_idx miidx

WHERE cn.country_code = ’[us]’ AND it.info = ’rating’
AND ct.kind = ’production companies’ AND kt.kind = ’movie’
AND it2.info = ’release dates’ AND ...
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Methodology

I cardinality extraction
1. load data set into different systems
2. run statistics tool (default settings)
3. collect estimates for all subexpressions (e.g., using EXPLAIN in

PostgreSQL) to obtain cardinality estimates
4. also run SELECT COUNT(*) queries to obtain true cardinalities

I cardinality injection into PostgreSQL



Cardinality Estimation



Cardinality Estimation for Base Table Selections

I q-error: max(e/r , r/e) (over- underestimation factor)

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084



Cardinality Estimation for Joins (1)
PostgreSQL
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Cardinality Estimation for Joins (2)

PostgreSQL DBMS A DBMS B DBMS C HyPer
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When do estimation errors
result in bad query plans?



Effect of Estimates on Query Performance (1)

I performance with true cardinalities vs. PostgreSQL’s estimates
default + no nested-loop join + rehashing
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Effect of Estimates on Query Performance (2)
PK indexes PK + FK indexes
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Cost Model



Cost vs. Runtime
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Conclusions

I cardinality estimates are quite bad for all tested systems
I nested-loop joins are dangerous
I the more indexes are available the more difficult it becomes to

find the optimal plan
I cost model is much less important than cardinality estimates

The paper (“How Good Are Query Optimizers, Really?”) is
available at: www.vldb.org/pvldb/vol9/p204-leis.pdf

www.vldb.org/pvldb/vol9/p204-leis.pdf


Part II: Building an
LLVM-Based Query Compiler



HyPer

I research project started at TU Munich in 2010 by Thomas
Neumann and Alfons Kemper

I relational main-memory DBMS
I SQL dialect is (mostly) PostgreSQL compatible, follows

PostgreSQL server protocol
I goal: similar performance as hand-written C programs
I startup acquired by Tableau Software in 2016



Compiling Query Plans

select *
from R1,R3,

(select R2.z,
count(*)

from R2
where R2.y=3
group by R2.z) R2

where R1.x=7
and R1.a=R3.b
and R2.z=R3.c

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

initialize memory of a=b , c=z , and Γz
for each tuple t in R1

if t.x = 7
materialize t in hash table of a=b

for each tuple t in R2
if t.y = 3

aggregate t in hash table of Γz
for each tuple t in Γz

materialize t in hash table of z=c
for each tuple t3 in R3

for each match t2 in z=c [t3.c]
for each match t1 in a=b[t3.b]

output t1 ◦ t2 ◦ t3



Compiling Queries: Interface

I each operator implements the following interface:
I produce(): generate code for that operator (and its child

operators)
I consume(attributes,source): generate code that receives a

tuple from input



Compiling Queries: Example Operators
scan.produce():

print “for each tuple in relation”
scan.parent.consume(attributes,scan)

σ.produce:
σ.input.produce()

σ.consume(a,s):
print “if ”+σ.condition
σ.parent.consume(attr,σ)

.produce():
.left.produce()
.right.produce()

.consume(a,s):
if (s== .left)

print “materialize tuple in hash table”
else

print “for each match in hashtable[” +a.joinattr+“]”
.parent.consume(a+new attributes)



Compiling to LLVM IR

I compilation to LLVM Intermediate Representation (IR)
(“machine-independent assembler”) using C++ API

I attributes are kept in CPU registers as far as possible
I generating code can be tedious but many compile time

abstractions help, e.g.:
I high-level control flow constructs (if, for)
I SQL value abstraction that handles null semantics, overflow

checking, etc.
I these abstractions do not cost any runtime

I for pragmatic and code size reasons some operators are
partially/mostly implemented in C++



Performance (1GB, 1 thread)

TPC-H O0 O1
# PG 9.6 comp. exec. comp. exec.
1 4908 6 161 42 77
2 254 23 13 149 8
3 1258 10 104 69 80
4 193 7 67 47 45
5 516 15 60 104 37



Lessons

I LLVM IR as a target language is great
I stable
I portable
I generates efficient machine code

I for large queries, compilation times can become a problem



More Information
“Efficiently Compiling Efficient Query Plans”:
www.vldb.org/pvldb/vol9/p204-leis.pdf

“Compiling Database Queries into Machine Code”:
sites.computer.org/debull/A14mar/p3.pdf

all HyPer papers: www.hyper-db.com

interested in doing a PhD at TU Munich?
contact us (leis@in.tum.de)

www.vldb.org/pvldb/vol9/p204-leis.pdf
sites.computer.org/debull/A14mar/p3.pdf
www.hyper-db.com

