Postgre -Consulting

data egret

YTo HOBOro B PostgreSQL

B rNjiaHe MOHUTOPWHTA

Alexey Lesovsky

alexey.lesovsky@dataegret.com

KTo aoknagumnk?

PostgreSQL DBA, cncteMHbIN agMUHNCTPATOP
Data Egret — PostgreSQL KOHCanTWHr 1 NnoAaaep>xKa

JTto6./110 MOHUTOPUHIU, CTAaTUCTUKY, BU3Yyann3aLmnm

9 Prometheus

PgCluu PgHero PGObserver
& ® @ -
w

15 Grafana

The Statistics Collector

https://www.postgresqgl.org/docs/current/monitoring-stats.html

https://www.postgresql.org/docs/current/monitoring-stats.html

27.2.19.pg_stat_slru
27.2.20. Statistics Functions

PostgreSQL's statistics collector is a subsystem that supports collection and reporting of information about server activity. Presently, the collector can count accesses to tables and indexes in both disk-block and individual-row terms. It also tracks the total number of rows in each
table, and information about vacuum and analyze actions for each table. It can also count calls to user-defined functions and the total time spent in each one.

PostgreSQL also supports reporting dynamic information about exactly what is going on in the system right now, such as the exact command currently being executed by other server processes, and which other connections exist in the system. This facility is independent of the
collector process.

27.2.1. Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to collect or not collect information. This is controlled by configuration parameters that are normally set in postgresql. conf. (See Chapter 19 for details about setting configuration
parameters.)

The parameter track_activities enables monitoring of the current command being executed by any server process.
The parameter track_counts controls whether statistics are collected about table and index accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read and write times.

Mormally these parameters are set in postgresql. conf so that they apply to all server processes, but it is possible to turn them on or off in individual sessions using the SET command. (Toe prevent ordinary users from hiding their activity from the administrator, only superusers
are allowed to change these parameters with SET.)

The statistics collector transmits the collected information to other PostgreSQL processes through temporary files. These files are stored in the directory named by the stats_temp_directory parameter, pg_stat tmp by default. For better performance, stats temp directory
can be pointed at a RAM-based file system, decreasing physical /0 requirements. When the server shuts down cleanly, a permanent copy of the statistics data is stored in the pg_stat subdirectory, so that statistics can be retained across server restarts. When recovery is
performed at server start (e.g., after immediate shutdown, server crash, and point-in-time recovery), all statistics counters are reset.

27.2.2. Viewing Statistics

Several predefined views, listed in Table 27.1, are available to show the current state of the system. There are also several other views, listed in Table 27.2, available to show the results of statistics collection. Alternatively, one can build custom views using the underlying statistics
functions, as discussed in Section 27.2.20.

When using the statistics to monitor collected data, it is important to realize that the information does not update instantaneously. Each individual server process transmits new statistical counts to the collector just before going idle; so a query or transaction still in progress does
not affect the displayed totals. Also, the collector itself emits a new report at most once per PGSTAT_STAT_INTERVAL milliseconds (500 ms unless altered while building the server). So the displayed information lags behind actual activity. However, current-query information
collected by track_activities is always up-to-date.

Another important point is that when a server process is asked to display any of these statistics, it first fetches the most recent report emitted by the collector process and then continues to use this snapshot for all statistical views and functions until the end of its current
transaction. So the statistics will show static information as long as you continue the current transaction. Similarly, information about the current queries of all sessions is collected when any such information is first requested within a transaction, and the same information will be
displayed throughout the transaction. This is a feature, not a bug, because it allows you to perform several queries on the statistics and correlate the results without worrying that the numbers are changing underneath you. But if you want to see new results with each query, be
sure to do the queries outside any transaction block. Alternatively, you can invoke pg_stat_clear_snapshot(), which will discard the current transaction's statistics snapshot (if any). The next use of statistical information will cause a new snapshot to be fetched.

A transaction can also see its own statistics (as yet untransmitted to the collector) in the views pg_stat xact all tables, pg stat xact sys tables, pg stat xact user tables, and pg stat xact user functions. These numbers do not act as stated above; instead
they update continuously throughout the transaction.

Some of the information in the dynamic statistics views shown in Table 27.1 is security restricted. Ordinary users can only see all the information about their own sessions (sessions belonging to a role that they are a member of). In rows about other sessions, many columns will be
null. Note, however, that the existence of a session and its general properties such as its sessions user and database are visible to all users. Superusers and members of the built-inrole pg_read all stats (see also Section 21.5) can see all the information about all sessions.

Table 27.1. Dynamic Statistics Views

View Name Description

pg_stat activity One row per server process, showing information related to the current activity of that process, such as state and current query. See pg_stat_activity for details.
pg_stat replication One row per WAL sender process, showing statistics about replication to that sender's connected standby server. See pg_stat replication for details.
pg_stat_wal_receiver Only one row, showing statistics about the WAL receiver from that receiver's connected server. See pg_stat_wal_receiver for details.

pg_stat_subscription At least one row per subscription, showing information about the subscription workers. See pg_stat_subscription for details.

pg_stat_ssl One row per connection (regular and replication), showing information about SSL used on this connection. See pg_stat_ss1 for details.

nn ct=a+ Acomnd Cna Faw nar crannactinn (raagrilar and renlicatinnt chawing infarmatinm abhant Cec APl snithanticatinmn arnAd anecrenticon 1icad Aan thic Fannacrtine Sea A c+a+ nccand for datraile

Client Backends

Query Planning

Shared Buffers

Query Execution

Indexes Usage Tables Usage

Buffers 10 SLRU Caches

Background Workers

Autovacuum Launcher

Autovacuum Weorkers

Write-Ahead Log
Stats Collector
o .
Process iy
Storage

Tables/indexes Data Files

pa_stat_kcache

pa_stat_ssl

pg_stat_activity

EXPLAIN
pg_stat_statements
po_stat_user_functions
pg_prepared_xacts
po_locks

pg_stat_all_indexes
pg_stat_all_tables
pg_statio_all_indexes
pg_statio_all_tables
pa_statio_all_sequences
pa_is_xlog_replay_paused()
pg_current_xleg_location()
pg_xlog_location_diff()

pa_replication_slots

pg_stat_replication

pg_stat_archiver

pg_stat_database_conflicts

Client Backends

Postmaster
Query Planning
Background Workers
Query Execution Shared Buffers
Indexes Usage Tables Usage £l T
Buffers 10 Autovacuum Workers
Write-Ahead Log
Logger Process Stats Collector
Replication Process Process. Writer Process
Network Storage
Tables/Indexes Data Files
‘Recovery Process

pg_buffercache

pg_stat_activity

pg_stat_database

po_stat_all_tables

pg_xlogfile_name()

po_current_xlog_insert_location()

po_last_xlog_receive_location()
pg_last_xlog_replay_location()

pg_stat_bgwriter

postattuple

pg_tablespace_size()
pg_database_size()
pg_total_relation_size()
pg_relation_size()
pg_table_size()
pg_indexes_size()

pg_ls_dir()

pg_xlogfile_name_offset()

pg_last_xact_replay_timestamp()

pg_relation_filenode()
pg_relation_filepath()

pg_filenode_relation()

https://pgstats.dev/

pg_log_backend_memory_contexts()

pg_stat_monitor
pa_stat_kcache
pg_wait_sampling
pg_blocking_pids()
pg_stat_progress_cluster
pg_stat_progress_copy

po_get_wal_replay_pause_state()

pa_stat_ssl

pg_stat_activity
pg_backend_memeory_contexts
EXPLAIN

pg_stat_statements
pg_stat_user_functions
pg_prepared_xacts

po_locks
pg_stat_progress_create_index
pg_stat_all_indexes
pg_stat_all_tables
pg_statio_all_indexes
pg_statio_all_tables

pg_statio_all_sequences

pg_is_wal_replay_paused()
pg_current_wal_lsn()
pg_wal_lsn_diff()
pa_ls_logdir()
pa_current_logfile()
pa_replication_slots
pa_stat_replication_slots
po_stat_replication
pg_stat_subscription
pg_stat_wal_receiver

pg_stat_archiver

pa_ls_archive_statusdir()

pg_stat_database_conflicts

Client Backends

Query Planning
Shared Buffers Background Workers

Query Execution

Autovacuum Launcher

Indexes Usage Tables Usage
Buffers 10 SLRU Caches Autovacuum Workers
Write-Ahead Log
Logger Process Stats Collector
Replication Process Process Writer Process
Network Storage
Tables/Indexes Data Files
'Recovery Process

pg_buffercache
pg_shmem_allocations
po_stat_siru
pg_stat_activity

pg_stat_database

pg_stat_progress_vacuum

po_stat_progress_analyze
pg_stat_all_tables

pg_stat_wal
pa_ls_waldir()
pg_walfile_name()

Ppo_current_wal_insert_Isn{)

po_last_wal_receive_lsn()
pg_last_wal_replay_lsn()

pg_stat_bgwriter

po_stat_progress_basebackup
postattuple

pg_tablespace_size()
pg_database_size()
Ppg_total_relation_size()
pg_relation_size()
pg_table_size()
pg_indexes_size()

pg_ls_tmpdir()
pg_ls_dir()

pg_walfile_name_offset()

pg_current_wal_flush_Isn()

pg_last_xact_replay_timestamp()

pg_relation_filenode()
pg_relation_filepath()
pg_filenode_relation()

https://pgstats.dev/

1,

ABe MUHYTbI
Typeukun! (c)

i §

pg_stat_activity — HegoCTaTouHO
9.6 pg_stat_progress_vacuum
12 pg_stat_progress_create_index

12 pg_stat_progress_cluster

pg_stat_progress_analyze, 13

pg_stat_progress_analyze, 13

+ 3Tan onepauuu

pg_stat_progress_analyze, 13

+ pa3Mep CaMMNJa 1 CkosibKo 06paboTaHo

pg_stat_progress_analyze, 13

+ noAJep>KKa NapTULVMOHNPOBAHHbLIX Tabnuy

CREERE . D

pg_stat_progress_analyze, 13

+ coegnHeHwue ¢ pg_stat_activity, pg_locks

pg_stat_progress_basebackup, 13

pg_stat_progress_basebackup, 13

+ 3Tan onepauuu

pg_stat_progress_basebackup, 13

+ NONHbIN Pa3Mep N CKONTbKO y>Xe OTrnpaB/iaeHO < >

pg_stat_progress_basebackup, 13

+ coegnHeHue ¢ pg_stat_activity, pg_locks?

pg_stat_progress_copy, 14

pg_stat_progress_copy, 14

+ getann COPY KoMaHAbI

pg_stat_progress_copy, 14

+ getann COPY KoMaHAbI

+ CKONIbKO 06paboTaHo 6anT 1 CTPOK

pg_stat_progress_copy, 14

+ petann COPY komaHAbI >

+ CKONIbKO 06paboTaHo 6anT 1 CTPOK

+ coegnHeHWe ¢ pg_stat_activity, pg_locks

CHECKPOINT
CREATE ..., ALTER ..., DROP ...
REFRESH ...

SELECT ..., INSERT ..., UPDATE ..., DELETE ...

TUK Tak,
Mucrtep Yuk,
TUK TaK

pg_stat_activity
* backend_start
* Xxact_start
* query_start

* state_change

pg_stat_activity
* backend_start
* Xxact_start
* query_start

* state_change — state

pg_stat_activity
* backend_start
* xact_ start — idle
* query_start — active
* state_change — state — idlein transaction
— jdle in transaction (aborted)

— fastpath function call

CkoNbKo BpeMEHN NOAKNKYEHNA MPOBOAAT B COCTOAHUAX?

pg_stat_database, 14

pg_stat_database, 14

Bpems npoBeseHHOe B ceccusix < >

pg_stat_database, 14

CTaTycCbl 3aBepLUeHNsA ceccuin < >

backends_total active_total idle xact_total session,ms active,ms 1idle _xact,ms sessions abandoned fatal killed

3

Nobody panics
when things go
according to plan.
Even if the plan is
horrifying!

EXPLAIN v auto_exaplain — Bbl6boOpoYHOe nsiaHpoBaHue
* PyuHon 3anyck (EXPLAIN)

* [lonck n aHanms xXypHanoB

Bpema nnaHnpoBaHuA B pg_stat_statements (13)
* time nepemeHoBanun B exec_time
* po6aBuau plan_time

* pg_stat_statements.track_planning

OTmMeTKa YpOBHSA BbiNosHeHUd (14)
* pg_stat_statements.track: all vs top
* track = all — gBoHO NoAcyeT B arperaTax

* pg_stat_statements.toplevel

Track rows for utility commands (14)
* REFRESH, CREATE TABLE AS, SELECT INTO, FETCH
pg_stat_statements_info (14) — dealloc, stats_reset

Track WAL usage stats (13)

4,

Y MeHs, Bce
XoAbl
3anucaHbl! (c)

O6beM 3anumcy oT 3anpocoB? pg_stat_statements
O6beM 3anuncy oT GOHOBLIX CNY6? pg_stat_bgwriter

O6bem 3anncm WAL —?

O6beM 3anumcy oT 3anpocoB? pg_stat_statements
O6beM 3anuncy oT GOHOBLIX CNY6? pg_stat_bgwriter

O6bem 3anmncm WAL — SELECT pg_current_wal_Isn() - '0/0"::pg_Isn;

pg_stat_wal, 14

pg_stat_wal, 14

KonnuecTBeHHble XxapaKTepuCTUKH < >

pg_stat_wal, 14

KonnyecTBeHHbIe XapaKTepuCTUKM

HexeaTka wal_buffers e 1D

pg_stat_wal, 14

KonnyecTBeHHbIe XapaKTepuCTUKM

HexBaTka wal_buffers

3aTpayeHHoe Bpems C >

TpeknHr WAL ctaTtnctuku, 13:
* EXPLAIN, auto_explain
* autovacuum

* pg_stat_statements

¥
A B/
Y ‘
‘4 -

«

D,

One does not
simply (c)

The Lord of the Ringsi The Fellowship of the Ring, 2001

KomnnekcHbin yyeT namatu: RES, VIRT, SHM, HUGEPAGES wn 1.n.
top, htop moryT, 1 YacTo BBOAAT B 3ab611yXaeHVe

MO>XHO Mcnonb3oBaTh AaHHble 13 /proc/$PID/

https://blog.anarazel.de/2020/10/07/measuring-the-memory-overhead-of-a-postgres-connection/

https://blog.anarazel.de/2020/10/07/measuring-the-memory-overhead-of-a-postgres-connection/

pg_backend_memory_contexts, 14

pg_backend_memory_contexts, 14

[leTanun 06 yyacTke NaMsTy Q

pg_backend_memory_contexts, 14

CtaTtuncTumka total, free, used

pg_backend_memory_contexts, 14

pg_log_backend_memory_contexts(integer)

- Dance with me.
- You don't dance.
- It was just my cover. b

- Was sloth your cover, too?

!

Mrr& Mrs. Smith, 2005

pg_stat_activity

pg_stat_statements

pg_stat_activity.queryid
pg_stat_statements.queryid

compute_query_id, 14

select a.*, s.* from pg stat activity a inner join pg_stat statements s on (a.datid = s.dbid AND a.usesysid = s.userid AND a.query id = s.queryid)
where a.pid = 1001291;

0.020301785698938563
0.005889254053319066
209439
884097

mean_exec_time
stddev_exec_time
rows

shared blks hit

-[RECORD 1]---=-—-—- e e e e
datid | 16413
datname | pgbench
pid | 1001291
leader pid |
usesysid | 10
usename | postgres
application name | pgbench
client addr
client hostname \
client port | -1
backend start | 2021-05-22 10:15:57.299468+05
xact_start | 2021-05-22 10:16:25.566151+05
query start | 2021-05-22 10:16:25.566623+05
state change | 2021-05-22 10:16:25.566763+05
wait event type |
wait event |
state | idle in transaction
backend xid | 237577
backend xmin
query id | 2517686606037258902
query | SELECT abalance FROM pgbench accounts WHERE aid = 1715456;
backend type | client backend
userid | 10
dbid | 16413
toplevel |t
queryid | 2517686606037258902
query | SELECT abalance FROM pgbench accounts WHERE aid = $1
plans | 0
total plan time | 0
min plan time | 0
max plan_ time |0
mean plan time | 0
stddev _plan time | 0
calls | 209439
total exec time | 4251.98569499987
min exec time | 0.005414
max_exec_time | 0.435581
\
\
\
\

pg_stat_activity.leader_pid (13)

=

[

= =]

Ior] =]

L]

cn

=B !
]
fak]
|
(o k]
(K5}

] |] |
| | 1 |

1 | 1 |

| | | |

1 |] |

1 |] |

] | | |

] |] |

] |] |

| |] |

1 |] |

| | | [

] |] 15}

] | | [

| g ==] | = { o | il

| m | [= (B L™~

1 (al] 1 1 (o} il | =

1 o e I ey - En ol (]

1 1=} | 1 =

| (w il | o=

| -~ 5T} (B = |

[a1} [|

(BT = el | == |

| ! f=! [|

[= [ma] | I 1

=1 . [= (=]
1 i (] [|

| = [| m o 1
[] (=] (R |

[e I T B =~ I (Y=] 2 I 2
e e] | = = e 1 an
| = &= M [IO | I

1 = o =] 1

1 -Ul. .||.r .||J _ll- 1

] .|p|. _l_ .”. o ..._..]

1 " = & (F5]]

1 = = |

[=]]

] 1

]]

| |

| e w |

I &N M~ "™]

] = =]

| & M= ol]

TN =i]

]]

Inception, 2010

pg_shmem_allocations — pacnpeaeneHve namatn B shared buffers (13)

pg_stat_slru — mcnonb3oBaHme SLRU kawen (13)

pg_stat_replication_slots — ctatuctmnka cnotoB pennnkauuu (14)

pg_locks.waitstart (14)

Bpemsa BbinosiHeHMsA IO npu normposaHun auto-vacuum/analyze (14)

THE END

pg_stat_actvity, pg_stat_progress_*

pg_stat_statements

pg_log_backend_memory_contexts()

pg_stat_monitor
pa_stat_kcache
pg_wait_sampling
pg_blocking_pids()
pg_stat_progress_cluster
pg_stat_progress_copy

po_get_wal_replay_pause_state()

pa_stat_ssl

pg_stat_activity
pg_backend_memeory_contexts
EXPLAIN

pg_stat_statements
pg_stat_user_functions
pg_prepared_xacts

po_locks
pg_stat_progress_create_index
pg_stat_all_indexes
pg_stat_all_tables
pg_statio_all_indexes
pg_statio_all_tables

pg_statio_all_sequences

pg_is_wal_replay_paused()
pg_current_wal_lsn()
pg_wal_lsn_diff()
pa_ls_logdir()
pa_current_logfile()
pa_replication_slots
pa_stat_replication_slots
po_stat_replication
pg_stat_subscription
pg_stat_wal_receiver

pg_stat_archiver

pa_ls_archive_statusdir()

pg_stat_database_conflicts

Client Backends

Query Planning
Shared Buffers Background Workers

Query Execution

Autovacuum Launcher

Indexes Usage Tables Usage
Buffers 10 SLRU Caches Autovacuum Workers
Write-Ahead Log
Logger Process Stats Collector
Replication Process Process Writer Process
Network Storage
Tables/Indexes Data Files
'Recovery Process

pg_buffercache
pg_shmem_allocations
po_stat_siru
pg_stat_activity

pg_stat_database

pg_stat_progress_vacuum

po_stat_progress_analyze
pg_stat_all_tables

pg_stat_wal
pa_ls_waldir()
pg_walfile_name()

Ppo_current_wal_insert_Isn{)

po_last_wal_receive_lsn()
pg_last_wal_replay_lsn()

pg_stat_bgwriter

po_stat_progress_basebackup
postattuple

pg_tablespace_size()
pg_database_size()
Ppg_total_relation_size()
pg_relation_size()
pg_table_size()
pg_indexes_size()

pg_ls_tmpdir()
pg_ls_dir()

pg_walfile_name_offset()

pg_current_wal_flush_Isn()

pg_last_xact_replay_timestamp()

pg_relation_filenode()
pg_relation_filepath()
pg_filenode_relation()

https://pgstats.dev/

pg_stat_activity

pg_stat_activity

Related items: Client Backends, Query Execution, Background Workers, Autovacuum Launcher, Autovacuum Workers

The pg_stat_activity view will have one row per server process, showing information related
to the current activity of that process.

TIPS'N'TRICKS

* Use 'now() - xact_start for get human-readable age of transactions. Same approach can be
used with 'backend_start', 'query_start' and 'state_change'.

s Use 'coalesce(usename, backend_type)', because system processes like autovacuum
workers have NULL in 'usename’.

RESOURCES

* Official documentation
* Summary activity Brief information about connected clients.

* Long activity. Current activity longer than 100ms.

CHANGES

14: Add 'query_id' to report query ID of recent query executed by backend

13: Add 'leader_pid' to report a parallel worker's leader process.
10: Add 'backend_type' column which shows auxiliary processes, background workers, and

wal sender processes

10: Allow to show the SQL query being executed by parallel workers.
* 9.6: Replace the 'waiting' column with 'wait_event_type' and 'wait_event'.

name
datid
datname
pid
leader_pid

usesysid
usename

application_name

client_addr

client_hostname

client_port

backend_start

xact_start

query_start

state_change

waiting

wait_event_type

wait_event

type
oid
name
integer
integer

oid
name

text

inet

text

integer

timestamp
with time
zone
timestamp
with time
zone
timestamp
with time
zone
timestamp
with time
zone

boalean

text

text

COLUMNS DESCRIPTION

description
0ID of the database this backend is connected to
Name of the database this backend is connected to.

Process 1D of this backend.

Process 1D of the parallel group leader, if this process is a parallel query worker. NULL if this process is a parallel
group leader or does not participate in parallel query. Added in Postgres 13.

0ID of the user logged into this backend.
Name of the user logged into this backend.

Name of the application that is connected to this backend.

IP address of the client connected to this backend. If this field is NULL, it indicates either that the client is
connected via a Unix socket on the server machine or that this is an internal process such as autovacuum
Host name of the connected client, as reported by a reverse DNS lookup of client_addr. This field will only be
non-NULL for IP connections, and anly when 'log_hostname' is enabled.

TCP port number that the client is using for communication with this backend, or -1 if a Unix socket is used. If
this field is NULL, it indicates that this is an internal server process

Time when this process was started. For client backends, this is the time the client connected to the server.

Time when this process’ current transaction was started, or NULL if no transaction is active. If the current query
is the first of its transaction, this column is equal to the 'query_start' column.

Time when the currently active query was started, or if 'state’ 1s not active, when the last query was started.

Time when the state was last changed.

True if this backend is currently waiting on a lock. Removed in Postgres 9.6.

The type of event for which the backend is waiting, if any; otherwise NULL. See Wait Event Types table. Added in
Postgres 9.6.

Wait event name if backend is currently waiting, otherwise NULL. See the group of Wait Events tables. Added in

Postgres 9.6.

Current overall state of this backend. Possible values are: * active: The backend is executing a query. * idle: The

backend is waiting for a new client command. * idle in transaction: The backend is in a transaction, but is not

Cnacm60 3a BHNMaHue

Anekceli JlecoBckuii, alexey.lesovsky@dataegret.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

