

PL/pgSQL
Debugging

Who Am I?

● Jim Mlodgenski
– jimm@openscg.com

– @jim_mlodgenski

● Director
– United States PostgreSQL (www.postgresql.us)

● Co-organizer of
– Philly PUG (www.phlpug.org)

– NYC PUG (www.nycpug.org)

● CTO, OpenSCG
– www.openscg.com

mailto:jimm@openscg.com
http://www.postgresql.us/
http://www.phlpug.org/
http://www.nycpug.org/

Why?

● More web developers using PostgreSQL
– Use programming techniques inside the

database

● Wrong assumptions
– Using stored procedures prevent SQL Injection

attacks

● Migrations
– Its how Oracle has been advocating database

development for years

Example

● Find the youngest
rookie to rush for 100
yards against the
Dallas Cowboys

 first_name | last_name | p_year | p_week | p_age
------------+-----------+--------+--------+-------
 Edgerrin | James | 1999 | 8 | 21
 Jamal | Lewis | 2000 | 12 | 21
(2 rows)

Database Developer
CREATE OR REPLACE FUNCTION get_youngest_rookie_backs_against_team_min_yards_simple(
 p_team VARCHAR, p_yards integer, OUT first_name VARCHAR, OUT last_name VARCHAR,
 OUT p_year integer, OUT p_week integer, OUT p_age integer)
 RETURNS SETOF record AS
$$
BEGIN
 RETURN QUERY
 WITH rookies AS (
 SELECT p.first_name, p.last_name, r.player_key,
 g.year, g.week, (g.year - p.birth_year) AS age,
 first_value(g.year - p.birth_year) OVER w AS youngest
 FROM games g, rushing r, player p
 WHERE g.game_id = r.game_id
 AND r.player_key = p.player_key
 AND (g.team = p_team OR g.opponent = p_team)
 AND r.yards >= p_yards
 AND g.year = p.debut_year
 AND r.player_key NOT IN (SELECT s.player_key
 FROM seasons s
 WHERE s.year = g.year
 AND s.team = p_team)
 WINDOW w AS (ORDER BY (g.year - p.birth_year)))
 SELECT k.first_name, k.last_name, k.year, k.week, k.age
 FROM rookies k
 WHERE k.age = k.youngest;
END;
$$ LANGUAGE plpgsql;

Web Developer
CREATE OR REPLACE FUNCTION get_backs_against_team_min_yards(
 p_team VARCHAR, p_yards integer, OUT p_player_key VARCHAR,
 OUT p_year integer, OUT p_week integer)
 RETURNS SETOF record AS
$BODY$
DECLARE
 g record;
 r record;
BEGIN
 FOR g IN SELECT game_id, year, week
 FROM games
 WHERE team = p_team
 OR opponent = p_team
 LOOP
 FOR r IN SELECT player_key, yards
 FROM rushing
 WHERE game_id = g.game_id
 LOOP
 IF r.yards >= p_yards AND
 NOT is_on_team(p_team, r.player_key, g.year) THEN
 p_player_key := r.player_key;
 p_year := g.year;
 p_week := g.week;
 RETURN NEXT;
 END IF;
 END LOOP;
 END LOOP;

 RETURN;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer
CREATE OR REPLACE FUNCTION is_on_team(
 p_team VARCHAR, p_player_key VARCHR, p_year integer)
 RETURNS boolean AS
$BODY$
DECLARE
 r record;
BEGIN
 FOR r IN SELECT team
 FROM seasons
 WHERE player_key = p_player_key
 AND year = p_year
 LOOP
 IF r.team = p_team THEN
 RETURN true;
 END IF;
 END LOOP;

 RETURN false;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer
CREATE OR REPLACE FUNCTION get_rookie_backs_against_team_min_yards(
 p_team VARCHAR, p_yards integer, OUT p1_player_key VARCHAR,
 OUT p1_year integer, OUT p1_week integer)
 RETURNS SETOF record AS
$BODY$
DECLARE
 r record;
BEGIN
 FOR r IN SELECT p_player_key, p_year, p_week
 FROM get_backs_against_team_min_yards(p_team, p_yards)
 LOOP
 IF is_rookie_year(r.p_player_key, r.p_year) THEN
 p1_player_key := r.p_player_key;
 p1_year := r.p_year;
 p1_week := r.p_week;
 RETURN NEXT;
 END IF;
 END LOOP;

 RETURN;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer
CREATE OR REPLACE FUNCTION is_rookie_year(
 p_player_key VARCHAR, p_year integer)
 RETURNS boolean AS
$BODY$
DECLARE
 l_year integer;
BEGIN
 SELECT debut_year
 INTO l_year
 FROM player
 WHERE player_key = p_player_key;

 IF l_year = p_year THEN
 RETURN true;
 END IF;

 RETURN false;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer
CREATE OR REPLACE FUNCTION get_youngest_rookie_backs_against_team_min_yards(
...
BEGIN
 l_age := 99;

 FOR r IN SELECT p1_player_key, p1_year, p1_week
 FROM get_rookie_backs_against_team_min_yards(p_team, p_yards)
 LOOP
 IF get_player_age_in_year(r.p1_player_key, r.p1_year) < l_age THEN
 l_age := get_player_age_in_year(r.p1_player_key, r.p1_year);
 END IF;
 END LOOP;

 FOR r IN SELECT p1_player_key, p1_year, p1_week
 FROM get_rookie_backs_against_team_min_yards(p_team, p_yards)
 LOOP
 IF get_player_age_in_year(r.p1_player_key, r.p1_year) = l_age THEN
 SELECT firstname, lastname
 INTO l_fn, l_ln
 FROM get_player_name(r.p1_player_key);

 first_name := l_fn;
 last_name := l_ln;
 p_year := r.p1_year;
 p_week := r.p1_week;
 p_age := l_age;

 RETURN NEXT;
 END IF;
 END LOOP;

 RETURN;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer

CREATE OR REPLACE FUNCTION get_player_age_in_year(
 p_player_key character varying, p_year integer)
 RETURNS integer AS
$BODY$
DECLARE
 l_year integer;
BEGIN
 SELECT birth_year
 INTO l_year
 FROM player
 WHERE player_key = p_player_key;

 RETURN p_year - l_year;
END;
$BODY$
 LANGUAGE plpgsql;

Web Developer

CREATE OR REPLACE FUNCTION get_player_name(
 p_player_key VARCHAR, OUT firstname VARCHAR,
 OUT lastname VARCHAR)
 RETURNS record AS
$BODY$
BEGIN
 SELECT first_name, last_name
 INTO firstname, lastname
 FROM seasons
 WHERE player_key = p_player_key
 LIMIT 1;

 RETURN;
END;
$BODY$
 LANGUAGE plpgsql;

How?

● The code rarely starts
so complex, but
growing functional
requirements and
short time lines
contribute to short cuts

● Developers know
enough PostgreSQL to
be dangerous

Fantasy Football

● Fantasy football is a
statistical game in
which players compete
against each other by
managing groups of
real players or position
units selected from
American football
teams.

Business Rules

● Passing
– Touchdown (4 points)

– Every 25 yards (1 point)

– Interception (-1 point)

● Rushing
– Touchdown (6 points)

– Every 10 yards (1 point)

● Receiving
– Touchdown (6 points)

– Every 10 yards (1 point)

Business Rules (Hockey Translation)

● Goal
– Wings & Centers (3 points)

– Defensemen (5 points)

– Goalie (5 points)

● Assist
– Wings & Centers (2 points)

– Defensemen (3 points)

– Goalie (3 points)

Sample Schema

Procedures
CREATE OR REPLACE FUNCTION rushing_score(p_player_key VARCHAR,
 p_year int,
 p_week int)
 RETURNS INT AS
$$
DECLARE
 score INT;
BEGIN
 -- 1 point for every 10 yards rushing
 SELECT r.yards/10
 INTO score
 FROM rushing r, games g
 WHERE r.game_id = g.game_id
 AND g.year = p_year
 AND g.week = p_week
 AND r.player_key = p_player_key;

 IF score IS NULL THEN
 RETURN 0;
 END IF;

 RETURN score;
END;
$$ LANGUAGE plpgsql;

Procedures
CREATE OR REPLACE FUNCTION player_game_score(p_player_key VARCHAR, p_year int, p_week int)
...
BEGIN
 score := 0;

 -- Get the position of the player
 SELECT position
 INTO l_position
 FROM player
 WHERE player_key = p_player_key;

 IF l_position = 'qb' THEN
 score := score + passing_score(p_player_key, p_year, p_week);
 score := score + rushing_score(p_player_key, p_year, p_week);
 score := score + td_score(p_player_key, p_year, p_week);
 ELSIF l_position = 'rb' THEN
 score := score + rushing_score(p_player_key, p_year, p_week);
 score := score + td_score(p_player_key, p_year, p_week);
 ELSIF l_position = 'wr' THEN
 score := score + receiving_score(p_player_key, p_year, p_week);
 score := score + td_score(p_player_key, p_year, p_week);
 ELSIF l_position = 'te' THEN
 score := score + receiving_score(p_player_key, p_year, p_week);
 score := score + td_score(p_player_key, p_year, p_week);
 ELSE
 return 0;
 END IF;

 return score;
END;
$$ LANGUAGE plpgsql;

Procedures

CREATE OR REPLACE FUNCTION avg_yearly_score(
 p_player_key VARCHAR, p_year int)
 RETURNS REAL AS
$$
DECLARE
 score INT;
 i INT;
BEGIN
 score := 0;

 FOR i IN 1..17 LOOP
 score := score + player_game_score(p_player_key,
p_year, i);
 END LOOP;

 RETURN score/16.0;
END;
$$ LANGUAGE plpgsql;

Debugging: RAISE
CREATE OR REPLACE FUNCTION passing_score(p_player_key VARCHAR, p_year int, p_week
int)
 RETURNS INT AS
$$
...
BEGIN
 score := 0;

 -- 1 point for every 25 yards passing
 SELECT p.pass_yards/25
 INTO yardage_score
 FROM passing p, games g
 WHERE p.game_id = g.game_id
 AND g.year = p_year
 AND g.week = p_week
 AND p.player_key = p_player_key;

 IF yardage_score IS NULL THEN
 yardage_score := 0;
 END IF;

 RAISE NOTICE 'Passing Yards Score: %', yardage_score;

Debugging: RAISE

nfl=# select passing_score('BreeDr00',
2005, 5);
NOTICE: Passing Yards Score: 8
NOTICE: Passing TD Score: 4
NOTICE: Interception Score: -2
 passing_score

 10
(1 row)

Debugger

git://git.postgresql.org/git/pldebugger.git
make USE_PGXS=1
make install USE_PGXS=1

- OR -

www.bigsql.org/postgresql/installers.jsp

shared_preload_libraries =
'$libdir/plugin_debugger'

CREATE EXTENSION pldbgapi;

http://www.bigsql.org/postgresql/installers.jsp

Debugger

Debugger

Debugger

Debugging Triggers

Debugging Triggers

Debugging: RAISE

nfl=# SELECT p.first_name, p.last_name,
 p.position,
 avg_yearly_score(p.player_key, 2006) AS score
 FROM player p
 WHERE p.player_key IN (SELECT *
 FROM yearly_player(2005))
 AND avg_yearly_score(p.player_key, 2006) > 10
 ORDER BY 4 DESC;

Debugging: RAISE
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing TD Score: 8
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Interception Score: -2
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing Yards Score: 9
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing TD Score: 4
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Interception Score: 0
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing Yards Score: 10
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing TD Score: 8
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Interception Score: -4
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing Yards Score: 7
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Passing TD Score: 4
CONTEXT: PL/pgSQL function player_game_score(character varying,integer,integer) line 15 at assignment
PL/pgSQL function avg_yearly_score(character varying,integer) line 9 at assignment
NOTICE: Interception Score: -2
...

Track Functions
set track_functions = 'PL';

nfl=# SELECT * FROM pg_stat_user_functions;
 funcid | schemaname | funcname | calls | total_time | self_time
--------+------------+-------------------+-------+------------+-----------
 20564 | public | avg_yearly_score | 547 | 7011.25 | 13.33
 20565 | public | passing_score | 1666 | 1551.862 | 1551.862
 20566 | public | player_game_score | 9299 | 6997.92 | 188.718
 20567 | public | receiving_score | 4811 | 2465.982 | 2465.982
 20568 | public | rushing_score | 4488 | 2303.934 | 2303.934
 20569 | public | td_score | 9299 | 487.424 | 487.424
 20570 | public | yearly_player | 1 | 14.139 | 14.139
(7 rows)

Profiler

https://bitbucket.org/openscg/plprofiler.git
make USE_PGXS=1
make install USE_PGXS=1

- OR -

http://www.bigsql.org/postgresql/installers.jsp

shared_preload_libraries =
'$libdir/plprofiler.so'

CREATE EXTENSION plprofiler;

http://www.bigsql.org/postgresql/installers.jsp

Profiler
$ plprofiler help

usage: plprofiler COMMAND [OPTIONS]

 plprofiler is a command line tool to control the plprofiler extension
 for PostgreSQL.

 The input of this utility are the call and execution statistics, the
 plprofiler extension collects. The final output is an HTML report of
 the statistics gathered. There are several ways to collect the data,
 save the data permanently and even transport it from a production
 system to a lab system for offline analysis.

 Use

 plprofiler COMMAND --help

 for detailed information about one of the commands below.

Profiler
$ plprofiler help
…
GENERAL OPTIONS:

 All commands implement the following command line options to specify
 the target database:

 -h, --host=HOST The host name of the database server.

 -p, --port=PORT The PostgreSQL port number.

 -U, --user=USER The PostgreSQL user name to connect as.

 -d, --dbname=DB The PostgreSQL database name or the DSN.
 plprofiler currently uses psycopg2 to connect
 to the target database. Since that is based
 on libpq, all the above parameters can also
 be specified in this option with the usual
 conninfo string or URI formats.

 --help Print the command specific help information
 and exit.

Profiler
$ plprofiler help
…
TERMS:

 The following terms are used in the text below and the help output of
 individual commands:

 in-memory-data The plprofiler extension collects run-time data in
 per-backend hashtables (in-memory). This data is only
 accessible in the current session and is lost when the
 session ends or the hash tables are explicitly reset.

 collected-data The plprofiler extension can copy the in-memory-data
 into global tables, to make the statistics available
 to other sessions. See the "monitor" command for
 details. This data relies on the local database's
 system catalog to resolve Oid values into object
 definitions.

 saved-dataset The in-memory-data as well as the collected-data can
 be turned into a named, saved dataset. These sets
 can be exported and imported onto other machines.
 The saved datasets are independent of the system
 catalog, so a report can be generated again later,
 even even on a different system.

Profiler
$ plprofiler help
…
COMMANDS:

 run Runs one or more SQL statements with the plprofiler
 extension enabled and creates a saved-dataset and/or
 an HTML report from the in-memory-data.

 monitor Monitors a running application for a requested time
 and creates a saved-dataset and/or an HTML report from
 the resulting collected-data.

 reset-data Deletes the collected-data.

 save Saves the current collected-data as a saved-dataset.

 list Lists the available saved-datasets.

 edit Edits the metadata of one saved-dataset. The metadata
 is used in the generation of the HTML reports.

 report Generates an HTML report from either a saved-dataset
 or the collected-data.

 delete Deletes a saved-dataset.

 export Exports one or all saved-datasets into a JSON file.

 import Imports the saved-datasets from a JSON file, created
 with the export command.

Profiler
nfl=# SELECT p.first_name, p.last_name, p.position,
nfl-# avg_yearly_score(p.player_key, 2006) AS score
nfl-# FROM player p
nfl-# WHERE p.player_key IN (SELECT * FROM
yearly_player(2005))
nfl-# AND avg_yearly_score(p.player_key, 2006) > 10
nfl-# ORDER BY 4 DESC;
 first_name | last_name | position | score
------------+----------------+----------+---------
 LaDainian | Tomlinson | rb | 22.5
 Peyton | Manning | qb | 18.875
 Larry | Johnson | rb | 17.875
 Michael | Vick | qb | 15.875
 Drew | Brees | qb | 15.75
 Marc | Bulger | qb | 15.5625
 Steven | Jackson | rb | 15.1875
 Carson | Palmer | qb | 15.125
 Willie | Parker | rb | 14.9375

Profiler
$ plprofiler run -h localhost -d nfl \
 -c "SELECT p.first_name, p.last_name, p.position, \
 avg_yearly_score(p.player_key, 2006) AS score \
 FROM player p WHERE p.player_key \
 IN (SELECT * \
 FROM yearly_player(2005)) \
 AND avg_yearly_score(p.player_key, 2006) > 10 \
 ORDER BY 4 DESC" \
--name="Run 1" --title="PGDay" \
--desc="PGDay Russia" \
--output="run1.html"

Profiler

Profiler

Real Use Case

Real Use Case

Real Use Case

Summary

● Be careful running these tools on
production systems
– They do have some performance impact

● Building the extensions are simple, but still
require a development environment

● The debugger and the profiler use the
same hooks so at the moment they can not
be used at the same time

Questions?

jimm@openscg.com
@jim_mlodgenski

mailto:jimm@openscg.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

